83 resultados para complement regulator factor H related protein 1
Resumo:
Throughout follicular growth the number of immune cells increases, enhanced under stimulation with exogenous gonadotropins. This treatment, however, may adversely influence folliculogenesis and negatively affect oocyte quality through modifications in the follicular concentrations of cytokines released by these immune cells. We studied this hypothesis by systematically analysing the concentrations of cytokines present in the serum and follicular fluid at the time of follicular aspiration in conventional gonadotropin-stimulated (c-IVF) cycles in comparison with natural cycle IVF (NC-IVF) in which the follicles were naturally matured. Our study involved 37 NC-IVF and 39 c-IVF cycles including 13 women who underwent both therapies. Mean age was 35.3 ± 4.6 (SD) and 34.2 ± 3.7 years in the NC-IVF and c-IVF groups (ns). Thirteen cytokines were determined in matched serum and FF samples. Interleukin (IL)-4, TNF-α, RANTES, eotaxin and interferon-gamma-induced protein-10 concentrations were lower in FF than in serum. IL-6, -8, -10, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median levels in FF than in serum, indicating possible ovarian production. Most of these markers were also increased in concentration in the stimulated (c-IVF) than in the NC groups in the serum, but not in the follicular fluid. This finding can be attributed to the increased number of active follicles present after controlled ovarian stimulation. IL-8 was reduced in c-IVF cycles. Our study did not reveal differences in follicular fluid but in serum cytokine concentrations, suggesting that the follicular immune system might not be significantly affected by gonadotropin stimulation.
Resumo:
Human granulocytes express several glycoproteins of the CEACAM family. One family member, CEACAM3, operates as a single-chain phagocytic receptor, initiating the detection, internalization, and destruction of a limited set of gram-negative bacteria. In contrast, the function of CEACAM4, a closely related protein, is completely unknown. This is mainly a result of a lack of a specific ligand for CEACAM4. By generating chimeric proteins containing the extracellular bacteria-binding domain of CEACAM3 and the transmembrane and cytoplasmic part of CEACAM4 (CEACAM3/4) we demonstrate that this chimeric receptor can trigger efficient phagocytosis of attached particles. Uptake of CEACAM3/4-bound bacteria requires the intact ITAM of CEACAM4, and this motif is phosphorylated by Src family PTKs upon receptor clustering. Furthermore, SH2 domains derived from Src PTKs, PI3K, and the adapter molecule Nck are recruited and associate directly with the phosphorylated CEACAM4 ITAM. Deletion of this sequence motif or inhibition of Src PTKs blocks CEACAM4-mediated uptake. Together, our results suggest that this orphan receptor of the CEACAM family has phagocytic function and prompt efforts to identify CEACAM4 ligands.
Resumo:
INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.
Resumo:
PURPOSE Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. MATERIALS AND METHODS The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. RESULTS After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. CONCLUSIONS The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of rinsing. Rinsing with CHX maintained significantly higher cell viability and protein release of growth factors potent to the bone remodeling cycle.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Resumo:
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Resumo:
Antigenic variation of the intestinal protozoan parasite Giardia lamblia is caused by an exchange of the parasite's variant surface protein (VSP) coat. Many investigations on antigenic variation were performed with G. lamblia clone GS/M-83-H7 which produces surface antigen VSP H7. To generate novel information on giardial vsp gene transcription, vsp RNA levels were assessed by quantitative reverse transcription-(RT)-PCR in both axenic VSP H7-type trophozoites and subvariants obtained after negative selection of GS/M-83-H7 trophozoites by treatment with a cytotoxic, VSP H7-specific monoclonal antibody. Our investigation was not restricted to the assessment of the sense vsp transcript levels but also included an approach aimed at the detection of complementary antisense vsp transcripts within the two trophozoite populations. We found that sense vsp H7 RNA predominated in VSP H7-type trophozoites while sense RNA from only one (vsp IVg) of 8 subvariant vsp genes totally analysed predominated in subvariant-type trophozoites. Interestingly, the two trophozoite populations exhibited a similar relative distribution regarding the vsp H7 and vsp IVg antisense RNA molecules. An analogous sense versus antisense RNA pattern was also observed when the transcripts of gene cwp 1 (encoding cyst wall protein 1) were investigated. Here, both types of RNA molecules only appeared after cwp 1 had been induced through in vitro encystation of the parasite. These findings for the first time demonstrated that giardial antisense RNA production did not occur in a constitutive manner but was directly linked to complementary sense RNA production after activation of the respective gene systems.
Resumo:
STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.