90 resultados para charged aerosols


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol samples were collected in Zurich, Switzerland, at an urban background site and were analyzed with size exclusion chromatography (SEC) and laser/desorption ionization mass spectrometry (LDI-MS) for water-soluble organic compounds with high molecular weight. Daily samples were collected during two campaigns in winter and summer, for 1 month each. The concentration of high-molecular-weight compounds (humic-like substances (HULIS)) was between 0.4 and 4 μg/m3 in winter and summer. The most intense signals in the LDI-MS mass spectra were measured between m/z150 and 500, comparing well with the mode of the two main high mass peaks determined with SEC corresponding to masses between 200 and 600 Da. For the maximum molecular weight, however, different results were obtained by the two techniques: whereas a maximum molecular weight between 1300 and 3300 Da was found with SEC, hardly any peaks above m/z700 were measured with LDI-MS. During summer the maximum molecular weight of HULIS (determined with SEC) correlates positively with several parameters such as ozone and increased temperature indicative of enhanced atmospheric photo-oxidation. The HULIS concentration also correlates positively with the oxalic acid concentration in the particles. This suggests that HULIS are generated by secondary processes in summer. The lack of such correlations during winter suggests that other sources and processes might be important during colder seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in the foreseeable future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56±4 in BJ and 46±5% in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54% in BJ, and 40, 15 and 46% in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71% in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (∼85%) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ± 0.08 (stat.) ± 0.11 (sys.), and with the water targets emptied is 0.90 ± 0.09 (stat.) ± 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ± 0.33 (stat.) ± 0.21 (sys.). This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the νµ charged current quasi-elastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasi-elastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are (11.95 ± 0.19(stat.) +1.82−1.47(syst.)) ×10^−39 cm^2/neutron, and (10.64 ± 0.37(stat.)+2.03−1.65(syst.)) × 10^−39 cm^2/neutron, respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ngm-3 and black carbon (BC) up to 17 μgm-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf/ was the dominant fraction of PM1, with the primary (POCnf/ and secondary (SOCnf/ fractions contributing 26–44% and 13–23% to the total carbon (TC), respectively. 5–8% of the TC had a primary fossil origin (POCf/, whereas the contribution of fossil secondary organic carbon (SOCf/ was 4–13 %. Nonfossil EC (ECnf/ and fossil EC (ECf/ ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the νµ-nucleus inclusive charged current cross section (=σ cc) on ironusing data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0◦ to 1.1◦. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV) = 1.10±0.15 (10^−38cm^2/nucleon), σcc(2.0 GeV) = 2.07±0.27 (10^−38cm^2/nucleon), and σcc(3.3 GeV) = 2.29 ± 0.45 (10^−38cm^2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1−1.3 μg m−3). The remaining 24 ± 11% (0.03−0.42 μg m−3) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5−2.8 μg m−3), approximately half of which was apportioned to primary biomass burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.