94 resultados para ZAP-70 Protein-Tyrosine Kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND No effective standard treatment exists for patients with radioiodine-refractory, advanced differentiated thyroid carcinoma. We aimed to assess efficacy and safety of vandetanib, a tyrosine kinase inhibitor of RET, VEGFR and EGFR signalling, in this setting. METHODS In this randomised, double-blind, phase 2 trial, we enrolled adults (aged ≥18 years) with locally advanced or metastatic differentiated thyroid carcinoma (papillary, follicular, or poorly differentiated) at 16 European medical centres. Eligible patients were sequentially randomised in a 1:1 ratio with a standard computerised scheme to receive either vandetanib 300 mg per day (vandetanib group) or matched placebo (placebo group), balanced by centre. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population based on investigator assessment. This study is registered with ClinicalTrials.gov, number NCT00537095. FINDINGS Between Sept 28, 2007, and Oct 16, 2008, we randomly allocated 72 patients to the vandetanib group and 73 patients to the placebo group. By data cutoff (Dec 2, 2009), 113 (78%) patients had progressed (52 [72%] patients in the vandetanib group and 61 [84%] in the placebo group) and 40 (28%) had died (19 [26%] patients in the vandetanib group and 21 [29%] in the placebo group). Patients who received vandetanib had longer PFS than did those who received placebo (hazard ratio [HR] 0·63, 60% CI 0·54-0·74; one-sided p=0·008): median PFS was 11·1 months (95% CI 7·7-14·0) for patients in the vandetanib group and 5·9 months (4·0-8·9) for patients in the placebo group. The most common grade 3 or worse adverse events were QTc prolongation (ten [14%] of 73 patients in the vandetanib group vs none in the placebo group), diarrhoea (seven [10%] vs none), asthenia (five [7%] vs three [4%]), and fatigue (four [5%] vs none). Two patients in the vandetanib group and one in the placebo group died from treatment-related serious adverse events (haemorrhage from skin metastases and pneumonia in the vandetanib group and pneumonia in the placebo group). INTERPRETATION Vandetanib is the first targeted drug to show evidence of efficacy in a randomised phase 2 trial in patients with locally advanced or metastatic differentiated thyroid carcinoma. Further investigation of tyrosine-kinase inhibitors in this setting is warranted. FUNDING AstraZeneca.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head and neck cancer constitutes the 6th most common malignancy worldwide and affects the crucial anatomical structures and physiological functions of the upper aerodigestive tract. Classical therapeutic strategies such as surgery and radiotherapy carry substantial toxicity and functional impairment. Moreover, the loco-regional control rates as well as overall survival still need to be improved in subgroups of patients. The scatter-factor/hepatocyte growth factor receptor tyrosine kinase MET is an established effector in the promotion, maintenance and progression of malignant transformation in a wide range of human malignancies, and has been gaining considerable interest in head and neck cancer over the last 15 years. Aberrant MET activation due to overexpression, mutations, tumor-stroma paracrine loops, and cooperative/redundant signaling has been shown to play prominent roles in epithelial-to-mesenchymal transition, angiogenesis, and responses to anti-cancer therapeutic modalities. Accumulating preclinical and translational evidence highly supports the increasing interest of MET as a biomarker for lymph node and distant metastases, as well as a potential marker of stratification for responses to ionizing radiation. The relevance of MET as a therapeutic molecular target in head and neck cancer described in preclinical studies remains largely under-evaluated in clinical trials, and therefore inconclusive. Also in the context of anti-cancer targeted therapy, a large body of preclinical data suggests a central role for MET in treatment resistance towards multiple therapeutic modalities in malignancies of the head and neck region. These findings, as well as the potential use of combination therapies including MET inhibitors in these tumors, need to be further explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Early assessment of response at 3 months of tyrosine kinase inhibitor treatment has become an important tool to predict favorable outcome. We sought to investigate the impact of relative changes of BCR-ABL transcript levels within the initial 3 months of therapy. In order to achieve accurate data for high BCR-ABL levels at diagnosis, beta glucuronidase (GUS) was used as a reference gene. Within the German CML-Study IV, samples of 408 imatinib-treated patients were available in a single laboratory for both times, diagnosis and 3 months on treatment. In total, 301 of these were treatment-naïve at sample collection. RESULTS (i) with regard to absolute transcript levels at diagnosis, no predictive cutoff could be identified; (ii) at 3 months, an individual reduction of BCR-ABL transcripts to the 0.35-fold of baseline level (0.46-log reduction, that is, roughly half-log) separated best (high risk: 16% of patients, 5-year overall survival (OS) 83% vs 98%, hazard ratio (HR) 6.3, P=0.001); (iii) at 3 months, a 6% BCR-ABL(IS) cutoff derived from BCR-ABL/GUS yielded a good and sensitive discrimination (high risk: 22% of patients, 5-year OS 85% vs 98%, HR 6.1, P=0.002). Patients at risk of disease progression can be identified precisely by the lack of a half-log reduction of BCR-ABL transcripts at 3 months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine kinase inhibitors (TKI) have changed the natural course of chronic myeloid leukemia (CML). With the advent of second-generation TKI safety and efficacy issues have gained interest. The randomized CML - Study IV was used for a long-term evaluation of imatinib (IM). 1503 patients have received IM, 1379 IM monotherapy. After a median observation of 7.1 years, 965 patients (64%) still received IM. At 10 years, progression-free survival was 82%, overall survival 84%, 59% achieved MR(5), 72% MR(4.5), 81% MR(4), 89% major molecular remission and 92% MR(2) (molecular equivalent to complete cytogenetic remission). All response levels were reached faster with IM800 mg except MR(5). Eight-year probabilities of adverse drug reactions (ADR) were 76%, of grades 3-4 22%, of non-hematologic 73%, and of hematologic 28%. More ADR were observed with IM800 mg and IM400 mg plus interferon α (IFN). Most patients had their first ADR early with decreasing frequency later on. No new late toxicity was observed. ADR to IM are frequent, but mostly mild and manageable, also with IM 800 mg and IM 400 mg+IFN. The deep molecular response rates indicate that most patients are candidates for IM discontinuation. After 10 years, IM continues to be an excellent initial choice for most patients with CML.Leukemia advance online publication, 13 March 2015; doi:10.1038/leu.2015.36.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at least operationally cured of their disease. Accurate definition of deep molecular responses (MRs) is therefore increasingly important for optimal patient management and comparison of independent data sets. We previously published proposals for broad standardized definitions of MR at different levels of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants.Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prosenescence therapy has recently emerged as a novel therapeutic approach for treating cancer. However, this concept is challenged by conflicting evidence showing that the senescence-associated secretory phenotype (SASP) of senescent tumor cells can have pro- as well as antitumorigenic effects. Herein, we report that, in Pten-null senescent tumors, activation of the Jak2/Stat3 pathway establishes an immunosuppressive tumor microenvironment that contributes to tumor growth and chemoresistance. Activation of the Jak2/Stat3 pathway in Pten-null tumors is sustained by the downregulation of the protein tyrosine phosphatase PTPN11/SHP2, providing evidence for the existence of a novel PTEN/SHP2 axis. Importantly, treatment with docetaxel in combination with a JAK2 inhibitor reprograms the SASP and improves the efficacy of docetaxel-induced senescence by triggering a strong antitumor immune response in Pten-null tumors. Altogether, these data demonstrate that immune surveillance of senescent tumor cells can be suppressed in specific genetic backgrounds but also evoked by pharmacological treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypereosinophilic syndromes are rare disorders in childhood and require extensive differential diagnostic considerations. In the last years the earlier "idiopathic HES" called syndromes could be differentiated into molecular biologically, immunophenotypically and clinically more characterized heterogeneous diseases with high therapeutic and prognostic relevance. Nowadays the term HES summarizes diseases, which go hand in hand with a local or systemic hypereosinophilia (HE) connected with an organ damage. Depending on the cause of the HE one differentiates primary/neoplastic HES (HESN) from secondary/reactive HES (HESR). The latter develops reactively in connection with allergies, parasitosis, medications, neoplasia or a clonal increase of T-lymphocytes among others. With HESN the HE results from a clonal increase of eosinophilic granulocytes. While for some subgroups of the HESN (among others FIP1L1-PDGFRA fusion gene) the administration of a tyrosine kinase inhibitor is a new and effective therapy option, glucocorticoids still represent the medication of first choice for many not PDGFRA associated variants. Different immunomodulatory drugs or cytostatic agents are necessary to allow dose reduction of glucocorticoids. The promising therapy with anti-IL-5 antibodies is still not approved in infancy, could however become a treatment option in the future. Due to the present lack of knowledge about the HES in infancy the establishment of a register should be aimed for the treatment of HES in infancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.