97 resultados para Wireless sensor and actuator network. LWiSSy. Domain specific language. modularization
Resumo:
Genetic immunisation is a simple method for producing polyclonal antibodies in mice. By this method, we produced antibodies against bovine interleukin-4 (BoIL-4). After a final injection with a recombinant BoIL-4 protein, nine stable hybridoma cell lines were established which secreted monoclonal antibodies (MAbs) against this cytokine. Specific binding of each of the MAbs to recombinant BoIL-4 produced by Escherichia coli, baculovirus, and Trypanosoma brucei was demonstrated in an indirect ELISA and/or in Western blotting. These MAbs recognise the same antigenic region localised in the first 47 amino acids of the mature protein. None of them was able to neutralise the biological activity of the BoIL-4 under the conditions tested but one allowed the detection of BoIL-4 by flow cytometry.
Resumo:
For several years now, neuroscientific research has been striving towards fundamental answers to questions about the relevance of sex/gender to language processing in the brain. This research has been effected through the search for sex/gender differences in the neurobiology of language processing. Thus, the main aim has ever been to focus on the differentiation of the sexes/genders, failing to define what sex, what gender, what female or male is in neurolingustic research. In other words, although neuroscientific findings have provided key insights into the brain functioning of women and men, neuropsychology has rarely questioned the complexity of the sex/gender variable beyond biology. What does “female” or “male” mean in human neurocognition; how are operationalisations implemented along the axes of “femaleness” or “maleness”; or what biological evidence is used to register the variables sex and/or gender? In the neurosciences as well as in neurocognitive research, questions such as these have so far not been studied in detail, even if they are highly significant for the scientific process. Instead, the variable of sex/gender has always been thought as solely dichotomous (as either female or male), oppositional and exclusionary of each other. Here, this theoretical contribution sets in. Based on findings in neuroscience and concepts in gender theory, this poster is dedicated to the reflection about what sex/gender is in the neuroscience of language processing. Following this aim, two levels of interest will be addressed. First: How do we define sex/gender at the level of participants? And second: How do we define sex/gender at the level of the experimental task? For the first, a multifactorial registration (work in progress) of the variable sex/gender will be presented, i.e. a tool that records sex/gender in terms of biology and social issues as well as on a spectrum between femaleness and maleness. For the second, the compulsory dichotomy of a gendered task when neurolinguistically approaching our cognitions of sex/gender will be explored.
Resumo:
Energy consumption modelling by state based approaches often assume constant energy consumption values in each state. However, it happens in certain situations that during state transitions or even during a state the energy consumption is not constant and does fluctuate. This paper discusses those issues by presenting some examples from wireless sensor and wireless local area networks for such cases and possible solutions.
Resumo:
The basic principle of gender-fair language is symmetric linguistic treatment of women and men. Depending on the structure of the respective language, two principle strategies can be deployed to make a language gender-fair. In languages with few gender-differentiating forms, such as English, there is a tendency towards neutralization. Here, gender-unmarked forms such as police officer or chairperson are used to substitute the male-biased policeman or chairman. The second strategy, feminization, implies that feminine forms of human nouns are used more frequently and systematically to make female referents visible.Since the 1970s, gender-fair language has been suggested, if not prescribed, for both scientific and official texts and its positive effects are widely documented. The use of gender-fair language increases the cognitive availability of feminine exemplars. Also in an applied context women responding to job advertisements formulated in gender-fair language feel more motivated to apply for the position. However, "side effects" of gender-fair language have also been observed: For instance, women referred to with a gender-fair title (e.g. chairperson) were evaluated as lower in status than women referred to with a masculine generic (e.g. chairman). Similarily, social initiatives framed with the use of gender-fair language were evaluated less-favourably than initiatives using traditional language. This presentation presents the gender-fair language use in the framework of a social dilemma. In order to protect themselves (or initiatives they stand for) from being ascribed incompetence or a lower status, women may avoid feminine forms and thus contribute to the perpetuation of gender-unfair language, which may be detrimental for women in general. Raising awareness for this social concern, and framing it both in terms of group and individual interest can direct the discussion about gender-fair language into a broader perspective of gender equality.
Resumo:
Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240-280ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German>French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography.
Resumo:
The way media depict women and men can reinforce or diminish gender stereotyping. Which part does language play in this context? Are roles perceived as more gender-balanced when feminine role nouns are used in addition to masculine ones? Research on gender-inclusive language shows that the use of feminine-masculine word pairs tends to increase the visibility of women in various social roles. For example, when speakers of German were asked to name their favorite "heroine or hero in a novel," they listed more female characters than when asked to name their favorite "hero in a novel." The research reported in this article examines how the use of gender-inclusive language in news reports affects readers' own usage of such forms as well as their mental representation of women and men in the respective roles. In the main experiment, German participants (N = 256) read short reports about heroes or murderers which contained either masculine generics or gender-inclusive forms (feminine-masculine word pairs). Gender-inclusive forms enhanced participants' own usage of gender-inclusive language and this resulted in more gender-balanced mental representations of these roles. Reading about "heroines and heroes" made participants assume a higher percentage of women among persons performing heroic acts than reading about "heroes" only, but there was no such effect for murderers. A post-test suggested that this might be due to a higher accessibility of female exemplars in the category heroes than in the category murderers. Importantly, the influence of gender-inclusive language on the perceived percentage of women in a role was mediated by speakers' own usage of inclusive forms. This suggests that people who encounter gender-inclusive forms and are given an opportunity to use them, use them more themselves and in turn have more gender-balanced mental representations of social roles.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
We developed UAVNet, a framework for the autonomous deployment of a flying Wireless Mesh Network using small quadrocopter-based Unmanned Aerial Vehicles (UAVs). The flying wireless mesh nodes are automatically interconnected to each other and building an IEEE 802.11s wireless mesh network. The implemented UAVNet prototype is able to autonomously interconnect two end systems by setting up an airborne relay, consisting of one or several flying wireless mesh nodes. The developed software includes basic functionality to control the UAVs and to setup, deploy, manage, and monitor a wireless mesh network. Our evaluations have shown that UAVNet can significantly improve network performance.