79 resultados para Video coding
Resumo:
The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.
Resumo:
OBJECTIVE Vestibular neuritis is often mimicked by stroke (pseudoneuritis). Vestibular eye movements help discriminate the two conditions. We report vestibulo-ocular reflex (VOR) gain measures in neuritis and stroke presenting acute vestibular syndrome (AVS). METHODS Prospective cross-sectional study of AVS (acute continuous vertigo/dizziness lasting >24 h) at two academic centers. We measured horizontal head impulse test (HIT) VOR gains in 26 AVS patients using a video HIT device (ICS Impulse). All patients were assessed within 1 week of symptom onset. Diagnoses were confirmed by clinical examinations, brain magnetic resonance imaging with diffusion-weighted images, and follow-up. Brainstem and cerebellar strokes were classified by vascular territory-posterior inferior cerebellar artery (PICA) or anterior inferior cerebellar artery (AICA). RESULTS Diagnoses were vestibular neuritis (n = 16) and posterior fossa stroke (PICA, n = 7; AICA, n = 3). Mean HIT VOR gains (ipsilesional [standard error of the mean], contralesional [standard error of the mean]) were as follows: vestibular neuritis (0.52 [0.04], 0.87 [0.04]); PICA stroke (0.94 [0.04], 0.93 [0.04]); AICA stroke (0.84 [0.10], 0.74 [0.10]). VOR gains were asymmetric in neuritis (unilateral vestibulopathy) and symmetric in PICA stroke (bilaterally normal VOR), whereas gains in AICA stroke were heterogeneous (asymmetric, bilaterally low, or normal). In vestibular neuritis, borderline gains ranged from 0.62 to 0.73. Twenty patients (12 neuritis, six PICA strokes, two AICA strokes) had at least five interpretable HIT trials (for both ears), allowing an appropriate classification based on mean VOR gains per ear. Classifying AVS patients with bilateral VOR mean gains of 0.70 or more as suspected strokes yielded a total diagnostic accuracy of 90%, with stroke sensitivity of 88% and specificity of 92%. CONCLUSION Video HIT VOR gains differ between peripheral and central causes of AVS. PICA strokes were readily separated from neuritis using gain measures, but AICA strokes were at risk of being misclassified based on VOR gain alone.
Resumo:
Purpose To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Methods Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Results Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. Conclusions The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.