101 resultados para Vegetation succession
Resumo:
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.
Resumo:
1 The Early Holocene sediment of a lake at tree line (Gouillé Rion, 2343 m a.s.l.) in the Swiss Central Alps was sampled for plant macrofossils. Thin (0.5 cm) slices, representing time intervals of c. 50 years each from 11 800 to 7800 cal. year bp, were analysed and the data compared with independent palaeoclimatic proxies to study vegetational responses to environmental change. 2 Alpine plant communities (e.g. with Salix herbacea) were established at 11 600–11 500 cal. year bp, when oxygen-isotope records showed that temperatures increased by c. 3–4 °C within decades. Larix decidua trees reached the site at c. 11 350 cal. year bp, probably in response to further warming by 1–2 °C. Forests dominated by L. decidua persisted until 9600 cal. year bp, when Pinus cembra became more important. 3 The dominance of Larix decidua for two millennia is explained by dry summer conditions, and possibly low winter temperatures, which favoured it over the late-successional Pinus cembra. Environmental conditions were a result of variations in the earth's orbit, leading to a maximum of summer and a minimum of winter solar radiation. Other heliophilous and drought-adapted species, such as Dryas octopetala and Juniperus nana, could persist in the open L. decidua forests, but were out-competed when the shade-tolerant P. cembra expanded. 4 The relative importance of Larix decidua decreased during periods of diminished solar radiation at 11 100, 10 100 and 9400 cal. year bp. Stable concentrations of L. decidua indicate that these percentage oscillations were caused by temporary increases of Pinus cembra, Dryas octopetala and Juniperus nana that can be explained by increases in moisture and/or decreases in summer temperature. 5 The final collapse of Larix decidua at 8400 cal. year bp was possibly related to abrupt climatic cooling as a consequence of a large meltwater input to the North Atlantic. Similarly, the temporary exclusion of Pinus cembra from tree line at 10 600–10 200 cal. year bp may be related to slowing down of thermohaline circulation at 10 700–10 300 cal. year bp. 6 Our results show that tree line vegetation was in dynamic equilibrium with climate, even during periods of extraordinarily rapid climatic change. They also imply that forecasted global warming may trigger rapid upslope movements of the tree line of up to 800 m within a few decades or centuries at most, probably inducing large-scale displacements of plant species as well as irrecoverable biodiversity losses.
Resumo:
Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.
Resumo:
o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).
Resumo:
Pollen stratigraphy of a core 270 cm long from Lake Dalgoto at 2310 m in the Northern Pirin Mountains, southern Bulgaria, was treated by optimal partitioning and compared to a broken-stick model to reveal statistically significant pollen zones. The vegetational reconstructions presented here are based on pollen percentages and pollen influx, on comparisons of modern and fossil pollen spectra, and on macrofossil dates from other sites in the mountains. During the Younger Dryas (11000–10200 14C yr BP), an open xerophytic herb vegetation with Artemisia and Chenopodiaceae was widely developed around the lake. Deciduous trees growing at lower elevations contributed to the pollen rain deposited at the higher-elevation sampling sites. Specifically, from 10200 to 8500 yr BP, Quercus, Ulmus, Tilia and Betula expanded rapidly at low and intermediate elevations, and between 8500 and 6500 yr BP they extended to higher elevations close to the upper forest limit, which was formed by Betula pendula at about 1900 m. Coniferous species were limited in the region at this time. After 6500 yr BP, the expansion of conifers (Pinus peuce, P. sylvestris, P. mugo, Abies alba) at high elevations forced the deciduous trees downward. Between 6500 and 3000 yr BP, the forest limit at 2200 m was formed by P. peuce, and A. alba had its maximum vertical range up to 1900 m. Later the abundance and vertical range of P. peuce and A. alba were reduced. After 3000 yr BP, Picea expanded.
Resumo:
Adaptation potential of forests to rapid climatic changes can be assessed from vegetation dynamics during past climatic changes as preserved in fossil pollen data. However, pollen data reflect the integrated effects of climate and biotic processes, such as establishment, survival, competition, and migration. To disentangle these processes, we compared an annually laminated late Würm and Holocene pollen record from the Central Swiss Plateau with simulations of a dynamic forest patch model. All input data used in the simulations were largely independent from pollen data; i.e. the presented analysis is non-circular. Temperature and precipitation scenarios were based on reconstructions from pollen-independent sources. The earliest arrival times of the species at the study site after the last glacial were inferred from pollen maps. We ran a series of simulations under different combinations of climate and immigration scenarios. In addition, the sensitivity of the simulated presence/absence of four major species to changes in the climate scenario was examined. The pattern of the pollen record could partly be explained by the used climate scenario, mostly by temperature. However, some features, in particular the absence of most species during the late Würm could only be simulated if the winter temperature anomalies of the used scenario were decreased considerably. Consequently, we had to assume in the simulations, that most species immigrated during or after the Younger Dryas (12 000 years BP), Abies and Fagus even later. Given the timing of tree species immigration, the vegetation was in equilibrium with climate during long periods, but responded with lags at the time-scale of centuries to millennia caused by a secondary succession after rapid climatic changes such as at the end of Younger Dryas, or immigration of dominant taxa. Climate influenced the tree taxa both directly and indirectly by changing inter-specific competition. We concluded, that also during the present fast climatic change, species migration might be an important process, particularly if geographic barriers, such as the Alps are in the migrational path.
Resumo:
Three well-dated pollen diagrams from 1985 m, 2050 m, and at the tree line at 2150 m asl show the vegetational succession in the central Altai Mountains since 16 cal ka BP. Pioneer vegetation after deglaciation was recorded first at the lowest site. Subsequently, dense dry steppe vegetation developed coincident with the change from silt to organic sediments at the two lower sites, but silt lasted longer at the highest site, indicating the persistence of bare ground there. Forests of Pinus sibirica, Pinus sylvestris, Picea obovata, Larix sibirica, Abies sibirica, and Betula pendula started to develop about 12 cal ka BP with the change to a warmer and wetter climate at the beginning of the Holocene. Results indicate that the timberline did not rise above the highest site. Mesophilous dark-coniferous forests were fully developed by 9.5 cal ka BP. The role of Abies and Picea decreased by about 7.5 cal ka BP suggesting cooler climate, after which the forests changed little until today. The vegetational development in this portion of the central Altai Mountains is compatible with that described in neighbouring areas of the Altai, southern Siberia, Mongolia, and Kazakhstan.
Resumo:
Only few studies documenting the vegetation history of the Llanos de Moxos, one of the largest seasonally flooded wetland areas in South America, are available and little is known about the environmental impact of pre-Columbian settlements. We use radiocarbon-dated terrestrial plant macrofossils to establish a sound chronology and palynological analyses to reconstruct the vegetation and fire history of the Lago Rogaguado area. The sedimentary pollen and spore record suggests that wetland and wooded savannah (Cerrado) environments occurred around the lake between 8100 and 5800 cal BP. Fire activity was high during this period and was probably connected to the dry Cerrado environments. The pollen evidence suggests early plant cultivation (Zea mays, Annonaceae and Cucurbitaceae) from 6500 cal BP onwards, which is significantly earlier than hitherto assumed for Amazonia. Gallery forests expanded after 5800 cal BP, when fire activity strongly declined. Forest expansion intensified around 2800 cal BP and continued until 2000 cal BP, when forest cover reached its maximum and fire activity its minimum. The late-Holocene forest expansion to the south and the decrease of fire activity may have resulted from a climatic shift to moister conditions (possibly a shorter dry season). New crops (e.g. Avena-type) or adventive plants (e.g. Rumex acetosella-type) document the impact of European economies after ca. 500 cal BP. Land use intensity remained rather stable over the most recent centuries, arguing against a collapse of settlements in response to the arrival of Europeans, as reconstructed from other Amazonian pollen records.
Resumo:
Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0–20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.
Resumo:
Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.
Resumo:
Vegetation history for the study region is reconstructed on the basis of pollen, charcoal and AMS14C investigations of lake sediments from Lago del Segrino (calcareous bedrock) and Lago di Muzzano (siliceous bedrock). Late-glacial forests were characterised byBetula andPinus sylvestris. At the beginning of the Holocene they were replaced by temperate continental forest and shrub communities. A special type of temperate lowland forest, withAbies alba as the most important tree, was present in the period 8300 to 4500 B.P. Subsequently,Fagus, Quercus andAlnus glutinosa were the main forest components andA. alba ceased to be of importance.Castanea sativa andJuglans regia were probably introduced after forest clearance by fire during the first century A.D. On soils derived from siliceous bedrock,C. sativa was already dominant at ca. A.D. 200 (A.D. dates are in calendar years). In limestone areas, however,C. sativa failed to achieve a dominant role. After the introduction ofC. sativa, the main trees were initially oak (Quercus spp.) and later the walnut (Juglans regia). Ostrya carpinifolia became the dominant tree around Lago del Segrino only in the last 100–200 years though it had spread into the area at ca. 5000 cal. B.C. This recent expansion ofOstrya is confirmed at other sites and appears to be controlled by human disturbances involving especially clearance. It is argued that these forests should not be regarded as climax communities. It is suggested that under undisturbed succession they would develop into mixed deciduous forests consisting ofFraxinus excelsior, Tilia, Ulmus, Quercus and Acer.
Resumo:
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.
Resumo:
Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.
Resumo:
Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.
Resumo:
Southern Switzerland is a fire prone area where fire has to be considered as a natural environmental factor. In the past decades, fire frequency has tended to increase due to changes in landscape management. The most common type of fire is surface fire which normally breaks out during the vegetation resting period. Usually this type of fire shows short residence time (rapid spread), low to medium fire intensity and limited size. South-facing slopes are particularly fire-prone, so that very high fire frequency is possible: under these conditions passive resistant species and postfire resprouting species are favoured, usually leading to a reduction in the number of surviving species to a few fire adapted sprouters. Evergreen broadleaves are extremely sensitive to repeated fires. A simulation of the potential vegetation of southern Switzerland under climatic changed conditions evidenced the coincidence of the potential area of spreading forests rich in evergreen broad-leaved species with the most fire-prone area of the region. Therefore, in future, wildfires could play an important regulating role: most probably they will not stop the large-scale laurophyllisation of the thermophilous forests of southern Switzerland, but at sites with high fire frequency the vegetation shift could be slowed or even prevented by fire-disturbances.