88 resultados para Transcranial Magnetic Stimulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15min on and 15min off) starting 45min after middle cerebral artery occlusion and lasting 4h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studying social behavior often requires the simultaneous interaction of many subjects. As yet, however, no painless, noninvasive brain stimulation tool existed that allowed the simultaneous affection of brain processes in many interacting subjects. Here we show that transcranial direct current stimulation (tDCS) can overcome these limits. We apply right prefrontal cathodal tDCS and show that subjects' propensity to punish unfair behavior is reduced significantly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this review is to investigate how transcranial direct current stimulation(tDCS)can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcatheter aortic valve implantation (TAVI) is an alternative to surgery for high-risk patients with severe aortic valve stenosis. Periprocedural stroke is reported at an incidence up to 10%. Magnetic resonance imaging studies have identified new onset of clinically silent ischaemic cerebral lesions more frequently (68-84%). So far, few data are available about cerebral embolism during TAVI. The aim of this study was to determine the frequency of high-intensity transient signals (HITS) and to explore differences in the HITS pattern between transfemoral and transapical access and between self-expanding (SE) and balloon-expandable (BE) deployment technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permission from the ethics committee and informed consent were obtained. The purpose of this study was to prospectively evaluate a method developed for the noninvasive assessment of muscle metabolites during exercise. Hydrogen 1 magnetic resonance (MR) spectroscopy peaks were measured during tetanic isometric muscle contraction imposed by supramaximal repetitive nerve stimulation. The kinetics of creatine-phosphocreatine and acetylcarnitine signal changes (P < .001) could be assessed continuously before, during, and after exercise. The control peak (trimethylammonium compounds), which served as an internal reference, did not change. This technique-that is, functional MR spectroscopy-opens the possibility for noninvasive diagnostic muscle metabolite testing in a clinical setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND "The feeling of being there" is one possible way to describe the phenomenon of feeling present in a virtual environment and to act as if this environment is real. One brain area, which is hypothesized to be critically involved in modulating this feeling (also called presence) is the dorso-lateral prefrontal cortex (dlPFC), an area also associated with the control of impulsive behavior. METHODS In our experiment we applied transcranial direct current stimulation (tDCS) to the right dlPFC in order to modulate the experience of presence while watching a virtual roller coaster ride. During the ride we also registered electro-dermal activity. Subjects also performed a test measuring impulsiveness and answered a questionnaire about their presence feeling while they were exposed to the virtual roller coaster scenario. RESULTS Application of cathodal tDCS to the right dlPFC while subjects were exposed to a virtual roller coaster scenario modulates the electrodermal response to the virtual reality stimulus. In addition, measures reflecting impulsiveness were also modulated by application of cathodal tDCS to the right dlPFC. CONCLUSION Modulating the activation with the right dlPFC results in substantial changes in responses of the vegetative nervous system and changed impulsiveness. The effects can be explained by theories discussing the top-down influence of the right dlPFC on the "impulsive system".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to describe magnetic resonance imaging (MRI) findings associated with presumed elevated intracranial pressure (ICP) in dogs and to evaluate whether MRI could be used to discriminate between dogs with and without elevated ICP. Of 91 dogs that underwent cranial MRI examination, 18 (19.8%) were diagnosed with elevated ICP based on neurological examination, fundoscopy and transcranial Doppler ultrasonography. The MRI findings that showed the strongest association with elevated ICP were mass effect (odds ratio [OR], 78.5), caudal transtentorial herniation (OR, 72.0), subfalcine herniation (OR, 45.6), perilesional oedema (OR, 34.0), displacement of the lamina quadrigemina (OR, 27.7) and effacement of the cerebral sulci (OR, 27.1). The presence of any two or more of the following MRI findings identified elevated ICP with a sensitivity of 72% and a specificity of 96%: compression of the suprapineal recess, compression of the third ventricle, compression of the fourth ventricle, effacement of the cerebral sulci and caudal transposition of the lamina quadrigemina. In conclusion, there is an association between MRI findings and elevated ICP in dogs; therefore, MRI might be useful to discriminate between dogs with and without elevated ICP.