77 resultados para TGF-ß, IL-10, asthma, Treg


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.