88 resultados para Surrogate motherhood
Resumo:
AIM To systematically assess the efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis (PM). MATERIAL AND METHODS Randomized (RCTs) and Controlled Clinical Trials (CCTs) were identified through an electronic search of three databases complemented by manual search. Identification, screening, eligibility and inclusion of studies was performed independently by two reviewers. Studies without professional intervention or with only mechanical debridement professionally administered were included. Quality assessment was performed by means of the Cochrane Collaboration's tool for assessing risk of bias. RESULTS Eleven RCTs with a follow-up from 3 to 24 months were included. Definition of PM was lacking or heterogeneously reported. Complete resolution of PM was not achieved in any study. One study reported 38% of patients with complete resolution of PM. Surrogate end-point outcomes of PM therapy were often reported. The choice of control interventions showed great variability. The efficacy of powered toothbrushes, a triclosan-containing toothpaste and adjunctive antiseptics remains to be established. High quality of methods and reporting was found in four studies. CONCLUSIONS Professionally- and patient-administered mechanical plaque control alone should be considered the standard of care in the management of PM. Therapy of PM is a prerequisite for the prevention of peri-implantitis.
Resumo:
AIMS Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES) in patients with STEMI. METHODS AND RESULTS ABSORB-STEMI TROFI II was a multicentre, single-blind, non-inferiority, randomized controlled trial. Patients with STEMI who underwent primary percutaneous coronary intervention were randomly allocated 1:1 to treatment with the Absorb or EES. The primary endpoint was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition. Between 06 January 2014 and 21 September 2014, 191 patients (Absorb [n = 95] or EES [n = 96]; mean age 58.6 years old; 17.8% females) were enrolled at eight centres. At 6 months, HS was lower in the Absorb arm when compared with EES arm [1.74 (2.39) vs. 2.80 (4.44); difference (90% CI) -1.06 (-1.96, -0.16); Pnon-inferiority <0.001]. Device-oriented composite endpoint was also comparably low between groups (1.1% Absorb vs. 0% EES). One case of definite subacute stent thrombosis occurred in the Absorb arm (1.1% vs. 0% EES; P = ns). CONCLUSION Stenting of culprit lesions with Absorb in the setting of STEMI resulted in a nearly complete arterial healing which was comparable with that of metallic EES at 6 months. These findings provide the basis for further exploration in clinically oriented outcome trials.
Resumo:
The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
Hip dysplasia is characterized by insufficient femoral head coverage (FHC). Quantification of FHC is of importance as the underlying goal of the surgery to treat hip dysplasia is to restore a normal acetabular morphology and thereby to improve FHC. Unlike a pure 2D X-ray radiograph-based measurement method or a pure 3D CT-based measurement method, previously we presented a 2.5D method to quantify FHC from a single anteriorposterior (AP) pelvic radiograph. In this study, we first quantified and compared 3D FHC between a normal control group and a patient group using a CT-based measurement method. Taking the CT-based 3D measurements of FHC as the gold standard, we further quantified the bias, precision and correlation between the 2.5D measurements and the 3D measurements on both the control group and the patient group. Based on digitally reconstructed radiographs (DRRs), we investigated the influence of the pelvic tilt on the 2.5D measurements of FHC. The intraclass correlation coefficients (ICCs) for absolute agreement was used to quantify interobserver reliability and intraobserver reproducibility of the 2.5D measurement technique. The Pearson correlation coefficient, r, was used to determine the strength of the linear association between the 2.5D and the 3D measurements. Student's t-test was used to determine whether the differences between different measurements were statistically significant. Our experimental results demonstrated that both the interobserver reliability and the intraobserver reproducibility of the 2.5D measurement technique were very good (ICCs > 0.8). Regression analysis indicated that the correlation was very strong between the 2.5D and the 3D measurements (r = 0.89, p < 0.001). Student's t-test showed that there were no statistically significant differences between the 2.5D and the 3D measurements of FHC on the patient group (p > 0.05). The results of this study provided convincing evidence demonstrating the validity of the 2.5D measurements of FHC from a single AP pelvic radiograph and proved that it could serve as a surrogate for 3D CT-based measurements. Thus it may be possible to use this method to avoid a CT scan for the purpose of estimating 3D FHC in diagnosis and post-operative treatment evaluation of patients with hip dysplasia.
Resumo:
CONTEXT The polyuria-polydipsia syndrome comprises primary polydipsia (PP) and central and nephrogenic diabetes insipidus (DI). Correctly discriminating these entities is mandatory, given that inadequate treatment causes serious complications. The diagnostic "gold standard" is the water deprivation test with assessment of arginine vasopressin (AVP) activity. However, test interpretation and AVP measurement are challenging. OBJECTIVE The objective was to evaluate the accuracy of copeptin, a stable peptide stoichiometrically cosecreted with AVP, in the differential diagnosis of polyuria-polydipsia syndrome. DESIGN, SETTING, AND PATIENTS This was a prospective multicenter observational cohort study from four Swiss or German tertiary referral centers of adults >18 years old with the history of polyuria and polydipsia. MEASUREMENTS A standardized combined water deprivation/3% saline infusion test was performed and terminated when serum sodium exceeded 147 mmol/L. Circulating copeptin and AVP levels were measured regularly throughout the test. Final diagnosis was based on the water deprivation/saline infusion test results, clinical information, and the treatment response. RESULTS Fifty-five patients were enrolled (11 with complete central DI, 16 with partial central DI, 18 with PP, and 10 with nephrogenic DI). Without prior thirsting, a single baseline copeptin level >21.4 pmol/L differentiated nephrogenic DI from other etiologies with a 100% sensitivity and specificity, rendering a water deprivation testing unnecessary in such cases. A stimulated copeptin >4.9 pmol/L (at sodium levels >147 mmol/L) differentiated between patients with PP and patients with partial central DI with a 94.0% specificity and a 94.4% sensitivity. A stimulated AVP >1.8 pg/mL differentiated between the same categories with a 93.0% specificity and a 83.0% sensitivity. LIMITATION This study was limited by incorporation bias from including AVP levels as a diagnostic criterion. CONCLUSION Copeptin is a promising new tool in the differential diagnosis of the polyuria-polydipsia syndrome, and a valid surrogate marker for AVP. Primary Funding Sources: Swiss National Science Foundation, University of Basel.
Resumo:
We present a novel surrogate model-based global optimization framework allowing a large number of function evaluations. The method, called SpLEGO, is based on a multi-scale expected improvement (EI) framework relying on both sparse and local Gaussian process (GP) models. First, a bi-objective approach relying on a global sparse GP model is used to determine potential next sampling regions. Local GP models are then constructed within each selected region. The method subsequently employs the standard expected improvement criterion to deal with the exploration-exploitation trade-off within selected local models, leading to a decision on where to perform the next function evaluation(s). The potential of our approach is demonstrated using the so-called Sparse Pseudo-input GP as a global model. The algorithm is tested on four benchmark problems, whose number of starting points ranges from 102 to 104. Our results show that SpLEGO is effective and capable of solving problems with large number of starting points, and it even provides significant advantages when compared with state-of-the-art EI algorithms.
Resumo:
BACKGROUND AND OBJECTIVE Rhinoviruses (RV) replicate in both upper and lower airway epithelial cells. We evaluated the possibility of using nasal epithelial cells (NEC) as surrogate of bronchial epithelial cells (BEC) for RV pathogenesis cell culture studies. METHODS We used primary paired NEC and BEC cultures established from healthy subjects and compared the replication of RV belonging to the major (RV16) and minor (RV1B) group, and the cellular antiviral and proinflammatory cytokine responses towards these viruses. We related antiviral and pro-inflammatory responses of NEC isolated from CF and COPD patients with those of BEC. RESULTS RV16 replication and major group surface receptor (ICAM-1) expression were higher in healthy NEC compared with BEC (P < 0.05); RV1B replication and minor group surface receptor (LDLR) expression were similar. Healthy NEC and BEC produced similar levels of IFN-β and IFN-λ2/3 upon RV infection or after simulation with poly(IC). IL-8 production was similar between healthy NEC and BEC. IL-6 release at baseline (P < 0.01) and upon infection with RV16 (P < 0.05) and poly(IC) stimulation (P < 0.05) was higher in NEC. RV1B viral load in NEC was related to RV1B viral load in BEC (r = 0.49, P = 0.01). There was a good correlation of IFN levels between NEC and BEC (r = 0.66, P = 0.0004 after RV1B infection). IL-8 production in NEC was related to IL-8 production in BEC (r = 0.48, P = 0.02 after RV1B infection). CONCLUSION NEC are a suitable alternative cellular system to BEC to study the pathophysiology of RV infections and particularly to investigate IFN responses induced by RV infection.
Resumo:
Pencil beam scanned (PBS) proton therapy has many advantages over conventional radiotherapy, but its effectiveness for treating mobile tumours remains questionable. Gating dose delivery to the breathing pattern is a well-developed method in conventional radiotherapy for mitigating tumour-motion, but its clinical efficiency for PBS proton therapy is not yet well documented. In this study, the dosimetric benefits and the treatment efficiency of beam gating for PBS proton therapy has been comprehensively evaluated. A series of dedicated 4D dose calculations (4DDC) have been performed on 9 different 4DCT(MRI) liver data sets, which give realistic 4DCT extracting motion information from 4DMRI. The value of 4DCT(MRI) is its capability of providing not only patient geometries and deformable breathing characteristics, but also includes variations in the breathing patterns between breathing cycles. In order to monitor target motion and derive a gating signal, we simulate time-resolved beams' eye view (BEV) x-ray images as an online motion surrogate. 4DDCs have been performed using three amplitude-based gating window sizes (10/5/3 mm) with motion surrogates derived from either pre-implanted fiducial markers or the diaphragm. In addition, gating has also been simulated in combination with up to 19 times rescanning using either volumetric or layered approaches. The quality of the resulting 4DDC plans has been quantified in terms of the plan homogeneity index (HI), total treatment time and duty cycle. Results show that neither beam gating nor rescanning alone can fully retrieve the plan homogeneity of the static reference plan. Especially for variable breathing patterns, reductions of the effective duty cycle to as low as 10% have been observed with the smallest gating rescanning window (3 mm), implying that gating on its own for such cases would result in much longer treatment times. In addition, when rescanning is applied on its own, large differences between volumetric and layered rescanning have been observed as a function of increasing number of re-scans. However, once gating and rescanning is combined, HI to within 2% of the static plan could be achieved in the clinical target volume, with only moderately prolonged treatment times, irrespective of the rescanning strategy used. Moreover, these results are independent of the motion surrogate used. In conclusion, our results suggest image guided beam gating, combined with rescanning, is a feasible, effective and efficient motion mitigation approach for PBS-based liver tumour treatments.
Resumo:
We assessed handrub consumption as a surrogate marker for hand hygiene compliance from 2007 to 2014. Handrub consumption varied substantially between departments but correlated in a mixed effects regression model with the number of patient-days and the observed hand hygiene compliance. Handrub consumption may supplement traditional hand hygiene observations. Infect. Control Hosp. Epidemiol. 2016;1-4.
Resumo:
AIMS High-density lipoproteins (HDLs) are considered as anti-atherogenic. Recent experimental findings suggest that their biological properties can be modified in certain clinical conditions by accumulation of serum amyloid A (SAA). The effect of SAA on the association between HDL-cholesterol (HDL-C) and cardiovascular outcome remains unknown. METHODS AND RESULTS We examined the association of SAA and HDL-C with mortality in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study, which included 3310 patients undergoing coronary angiography. To validate our findings, we analysed 1255 participants of the German Diabetes and Dialysis study (4D) and 4027 participants of the Cooperative Health Research in the Region of Augsburg (KORA) S4 study. In LURIC, SAA concentrations predicted all-cause and cardiovascular mortality. In patients with low SAA, higher HDL-C was associated with lower all-cause and cardiovascular mortality. In contrast, in patients with high SAA, higher HDL-C was associated with increased all-cause and cardiovascular mortality, indicating that SAA indeed modifies the beneficial properties of HDL. We complemented these clinical observations by in vitro experiments, in which SAA impaired vascular functions of HDL. We further derived a formula for the simple calculation of the amount of biologically 'effective' HDL-C based on measured HDL-C and SAA from the LURIC study. In 4D and KORA S4 studies, we found that measured HDL-C was not associated with clinical outcomes, whereas calculated 'effective' HDL-C significantly predicted better outcome. CONCLUSION The acute-phase protein SAA modifies the biological effects of HDL-C in several clinical conditions. The concomitant measurement of SAA is a simple, useful, and clinically applicable surrogate for the vascular functionality of HDL.
Resumo:
PURPOSE Paroxysmal atrial fibrillation (PAF) often remains undiagnosed. Long-term surface ECG is used for screening, but has limitations. Esophageal ECG (eECG) allows recording high quality atrial signals, which were used to identify markers for PAF. METHODS In 50 patients (25 patients with PAF; 25 controls) an eECG and surface ECG was recorded simultaneously. Partially A-V blocked atrial runs (PBARs) were quantified, atrial signal duration in eECG was measured. RESULTS eECG revealed 1.8‰ of atrial premature beats in patients with known PAF to be PBARs with a median duration of 853ms (interquartile range (IQR) 813-1836ms) and a median atrial cycle length of 366ms (IQR 282-432ms). Even during a short recording duration of 2.1h (IQR 1.2-17.2h), PBARs occurred in 20% of PAF patients but not in controls (p=0.05). Left atrial signal duration was predictive for PAF (72% sensitivity, 80% specificity). CONCLUSIONS eECG reveals partially blocked atrial runs and prolonged left atrial signal duration - two novel surrogate markers for PAF.
Resumo:
To compare intraoperative cerebral microembolic load between minimally invasive extracorporeal circulation (MiECC) and conventional extracorporeal circulation (CECC) during isolated surgical aortic valve replacement (SAVR), we conducted a randomized trial in patients undergoing primary elective SAVR at a tertiary referral hospital. The primary outcome was the procedural phase-related rate of high-intensity transient signals (HITS) on transcranial Doppler ultrasound. HITS rate was used as a surrogate of cerebral microembolism in pre-defined procedural phases in SAVR using MiECC or CECC with (+F) or without (-F) an oxygenator with integrated arterial filter. Forty-eight patients were randomized in a 1:1 ratio to MiECC or CECC. Due to intraprocedural Doppler signal loss (n = 3), 45 patients were included in final analysis. MiECC perfusion regimen showed a significantly increased HITS rate compared to CECC (by a factor of 1.75; 95% confidence interval, 1.19-2.56). This was due to different HITS rates in procedural phases from aortic cross-clamping until declamping [phase 4] (P = 0.01), and from aortic declamping until stop of extracorporeal perfusion [phase 5] (P = 0.05). Post hoc analysis revealed that MiECC-F generated a higher HITS rate than CECC+F (P = 0.005), CECC-F (P = 0.05) in phase 4, and CECC-F (P = 0.03) in phase 5, respectively. In open-heart surgery, MiECC is not superior to CECC with regard to gaseous cerebral microembolism. When using MiECC for SAVR, the use of oxygenators with integrated arterial line filter appears highly advisable. Only with this precaution, MiECC confers a cerebral microembolic load comparable to CECC during this type of open heart surgery.