414 resultados para Supersymmetrie, ATLAS, LHC, GMSB
Resumo:
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (socalled “lepton jets”). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors’ linear dimensions. This paper presents the results of a search for lepton jets in proton-proton collisions at the centre-of-mass energy of √s = 8TeV in a sample of 20.3 fb−1 collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle’s proper decay length.
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7μb−1 collected at the LHC in 2010. The measurements are performed for charged particles with transversemomenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
Resumo:
Measurements of fiducial and differential cross sections of Higgs boson production in the H →ZZ* → 4ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−1 of pp collision data, produced at √s = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found. c
Resumo:
Additional jet activity in dijet events is measured using pp collisions at ATLAS at a centre-of-mass energy of 7 TeV, for jets reconstructed using the anti-kt algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijets. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the mean transverse momentum of the dijets and of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijets. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWHEG+PYTHIA 8 and HEJ+ARIADNE are found to provide the best agreement with the data.These measurements use the full data sample collected with the ATLAS detector in 7 TeV pp collisions at the LHC and correspond to integrated luminosities of 36.1 pb−1 and 4.5 fb−1 for data collected during 2010 and 2011 respectively.
Resumo:
The prompt and non-prompt production cross-sections for ψ(2S) mesons are measured using 2.1 fb−1 of pp collision data at a centre-of-mass energy of 7TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the ψ(2S) → J/ψ (→μ+μ−)π+π− decay mode, and probes ψ(2S) mesons with transverse momenta in the range10 ≤ pT < 100 GeV and rapidity |y| < 2.0. The results are compared to other measurements of ψ(2S) production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.
Resumo:
Measurements of spin correlation in top quark pair production are presented using data collected with the ATLAS detector at the LHC with proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 4.6 fb −1 . Events are selected in final states with two charged leptons and at least two jets and in final states with one charged lepton and at least four jets. Four different observables sensitive to different properties of the top quark pair production mechanism are used to extract the correlation between the top and antitop quark spins. Some of these observables are measured for the first time. The measurements are in good agreement with the Standard Model prediction at next-to-leading-order accuracy.
Resumo:
A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb−1 at √ s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale ʌ between 15.4 TeVand 26.3 TeV, at the 95%credibility level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.
Resumo:
A measurement of the B 0 s →J/ψϕ decay parameters, updated to include flavor tagging is reported using 4.9 fb −1 of integrated luminosity collected by the ATLAS detector from s √ =7 TeV pp collisions recorded in 2011 at the LHC. The values measured for the physical parameters are ϕ s 0.12±0.25(stat)±0.05(syst) rad ΔΓ s 0.053±0.021(stat)±0.010(syst) ps −1 Γ s 0.677±0.007(stat)±0.004(syst) ps −1 |A ∥ (0)| 2 0.220±0.008(stat)±0.009(syst) |A 0 (0)| 2 0.529±0.006(stat)±0.012(syst) δ ⊥ =3.89±0.47(stat)±0.11(syst) rad where the parameter ΔΓ s is constrained to be positive. The S -wave contribution was measured and found to be compatible with zero. Results for ϕ s and ΔΓ s are also presented as 68% and 95% likelihood contours, which show agreement with the Standard Model expectations.
Resumo:
A search for excited states of the B ± c meson is performed using 4.9 fb −1 of 7 TeV and 19.2 fb −1 of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay B ± c →J/ψπ ± . The state appears in the m(B ± c π + π − )−m(B ± c )−2m(π ± ) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5 MeV , where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S -wave state of the B ± c meson, B ± c (2S) .
Resumo:
Results of a search for supersymmetry via direct production of third-generation squarks are reported, using 20.3 fb −1 of proton-proton collision data at √s =8 TeV recorded by the ATLAS experiment at the LHC in 2012. Two different analysis strategies based on monojetlike and c -tagged event selections are carried out to optimize the sensitivity for direct top squark-pair production in the decay channel to a charm quark and the lightest neutralino (t 1 →c+χ ˜ 0 1 ) across the top squark–neutralino mass parameter space. No excess above the Standard Model background expectation is observed. The results are interpreted in the context of direct pair production of top squarks and presented in terms of exclusion limits in the m ˜t 1, m ˜ X0 1 ) parameter space. A top squark of mass up to about 240 GeV is excluded at 95% confidence level for arbitrary neutralino masses, within the kinematic boundaries. Top squark masses up to 270 GeV are excluded for a neutralino mass of 200 GeV. In a scenario where the top squark and the lightest neutralino are nearly degenerate in mass, top squark masses up to 260 GeV are excluded. The results from the monojetlike analysis are also interpreted in terms of compressed scenarios for top squark-pair production in the decay channel t ˜ 1 →b+ff ′ +χ ˜ 0 1 and sbottom pair production with b ˜ 1 →b+χ ˜ 0 1 , leading to a similar exclusion for nearly mass-degenerate third-generation squarks and the lightest neutralino. The results in this paper significantly extend previous results at colliders.
Resumo:
This paper reports the results of a search for strong production of supersymmetric particles in 20.1 fb−1 of proton-proton collisions at a centre-of-mass energy of 8TeV using the ATLAS detector at the LHC. The search is performed separately in events with either zero or at least one high-pT lepton (electron or muon), large missing transverse momentum, high jet multiplicity and at least three jets identified as originated from the fragmentation of a b-quark. No excess is observed with respect to the Standard Model predictions. The results are interpreted in the context of several supersymmetric models involving gluinos and scalar top and bottom quarks, as well as a mSUGRA/CMSSM model. Gluino masses up to 1340 GeV are excluded, depending on the model, significantly extending the previous ATLAS limits.
Resumo:
A search for resonant WZ production in the ℓνℓ′ℓ′ℓνℓ′ℓ′ (ℓ,ℓ′=e,μℓ,ℓ′=e,μ) decay channel using 20.3 fb−1 of View the MathML sources=8 TeVpp collision data collected by the ATLAS experiment at LHC is presented. No significant deviation from the Standard Model prediction is observed and upper limits on the production cross sections of WZ resonances from an extended gauge model W′W′ and from a simplified model of heavy vector triplets are derived. A corresponding observed (expected) lower mass limit of 1.52 (1.49) TeV is derived for the W′W′ at the 95% confidence level.
Resumo:
This paper describes a measurement of the Z/ѵ* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of √s = 7 TeV at the LHC. The measurement is performed in the Z/ѵ* → e+e− and Z/ѵ* → μ+μ− channels, using data corresponding to an integrated luminosity of 4.7 fb−1. Normalized differential cross sections as a function of the Z/ѵ* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/ѵ* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.
Resumo:
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in √sNN=2.76 TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb−1. Jets were reconstructed using the anti-kt algorithm with distance parameter values R = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for R=0.4 jets with pjetT>100 GeV. Commensurate minimum pT values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate z values, 0.04≲z≲0.2 and an enhancement in fragment yield for z≲0.04. A smaller, less significant enhancement is observed at large z and large pT in central collisions.