184 resultados para Sleep Deprivation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: Periodic leg movements in sleep (PLMS) are frequently accompanied by arousals and autonomic activation, but the pathophysiologic significance of these manifestations is unclear. DESIGN: Changes in heart rate variability (HRV), HRV spectra, and electroencephalogram (EEG) spectra associated with idiopathic PLMS were compared with changes associated with isolated leg movements and respiratory-related leg movements during sleep. Furthermore, correlations between electromyographic activity, HRV changes, and EEG changes were assessed. SETTING: Sleep laboratory. PATIENTS: Whole-night polysomnographic studies of 24 subjects fulfilling the criteria of either periodic leg movements disorder (n = 8), obstructive sleep apnea syndrome (n = 7), or normal polysomnography (n = 9) were used. MEASUREMENTS AND RESULTS: Spectral HRV changes started before all EEG changes and up to 6 seconds before the onset of all types of leg movements. An initial weak autonomic activation was followed by a sympathetic activation, an increase of EEG delta activity, and finally a progression to increased higher-frequency EEG rhythms. After movement onset, HRV indicated a vagal activation, and, the EEG, a decrease in spindle activity. Sympathetic activation, as measured by HRV spectra, was greater for PLMS than for all other movement types. In EEG, gamma synchronization began 1 to 2 seconds earlier for isolated leg movements and respiratory-related leg movements than for PLMS. Significant correlations were found between autonomic activations and electromyographic activity, as well as between autonomic activations and EEG delta activity, but not between higher-frequency EEG rhythms and EMG activity or HRV changes. CONCLUSIONS: These results suggest a primary role of the sympathetic nervous system in the generation of PLMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narcolepsy is usually an idiopathic disorder, often with a genetic predisposition. Symptomatic cases have been described repeatedly, often as a consequence of hypothalamic lesions. Conversely, REM (rapid eye movement) sleep behaviour disorder (RBD) is usually a secondary disorder, often due to degenerative brain stem disorders or narcolepsy. The case of a hitherto healthy man is presented, who simultaneously developed narcolepsy and RBD as the result of an acute focal inflammatory lesion in the dorsomedial pontine tegmentum in the presence of normal cerebrospinal fluid hypocretin-1 levels and in the absence of human lymphocyte antigen haplotypes typically associated with narcolepsy and RBD (DQB1*0602, DQB1*05). This first observation of symptomatic narcolepsy with RBD underlines the importance of the mediotegmental pontine area in the pathophysiology of both disorders, even in the absence of a detectable hypocretin deficiency and a genetic predisposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: During sleep, ventilation and functional residual capacity (FRC) decrease slightly. This study addresses regional lung aeration during wakefulness and sleep. METHODS: Ten healthy subjects underwent spirometry awake and with polysomnography, including pulse oximetry, and also CT when awake and during sleep. Lung aeration in different lung regions was analyzed. Another three subjects were studied awake to develop a protocol for dynamic CT scanning during breathing. RESULTS: Aeration in the dorsal, dependent lung region decreased from a mean of 1.14 +/- 0.34 mL (+/- SD) of gas per gram of lung tissue during wakefulness to 1.04 +/- 0.29 mL/g during non-rapid eye movement (NREM) sleep (- 9%) [p = 0.034]. In contrast, aeration increased in the most ventral, nondependent lung region, from 3.52 +/- 0.77 to 3.73 +/- 0.83 mL/g (+ 6%) [p = 0.007]. In one subject studied during rapid eye movement (REM) sleep, aeration decreased from 0.84 to 0.65 mL/g (- 23%). The fall in dorsal lung aeration during sleep correlated to awake FRC (R(2) = 0.60; p = 0.008). Airway closure, measured awake, occurred near and sometimes above the FRC level. Ventilation tended to be larger in dependent, dorsal lung regions, both awake and during sleep (upper region vs lower region, 3.8% vs 4.9% awake, p = 0.16, and 4.5% vs 5.5% asleep, p = 0.09, respectively). CONCLUSIONS: Aeration is reduced in dependent lung regions and increased in ventral regions during NREM and REM sleep. Ventilation was more uniformly distributed between upper and lower lung regions than has previously been reported in awake, upright subjects. Reduced respiratory muscle tone and airway closure are likely causative factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo studies support selective neuronal vulnerability to hypoxia-ischemia (HI) in the developing brain. Since differences in intrinsic properties of neurons might be responsible, pure cultures containing immature neurons (6-8 days in vitro) isolated from mouse cortex and hippocampus, regions chosen for their marked vulnerability to oxidative stress, were studied under in vitro ischemic conditions-oxygen-glucose deprivation (OGD). Twenty-four hours of reoxygenation after 2.5 h of OGD induced significantly greater cell death in hippocampal than in cortical neurons (67.8% vs. 33.4%, P = 0.0068). The expression of neuronal nitric oxide synthase (nNOS) protein, production of nitric oxide (NO), and reactive oxygen species (ROS), as well as glutathione peroxidase (GPx) activity and intracellular levels of reduced glutathione (GSH), were measured as indicators of oxidative stress. Hippocampal neurons had markedly higher nNOS expression than cortical neurons by 24 h of reoxygenation, which coincided with an increase in NO production, and significantly greater ROS accumulation. GPx activity declined significantly in hippocampal but not in cortical neurons at 4 and 24 h after OGD. The decrease in GSH level in hippocampal neurons correlated with the decline of GPx activity. Our data suggest that developing hippocampal neurons are more sensitive to OGD than cortical neurons. This finding supports our in vivo studies showing that mouse hippocampus is more vulnerable than cortex after neonatal HI. An imbalance between excess prooxidant production (increased nNOS expression, and NO and ROS production) and insufficient antioxidant defenses created by reduced GPx activity and GSH levels may, in part, explain the higher susceptibility to OGD of immature hippocampal neurons.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Androgen deprivation therapy (ADT) is increasingly used for the treatment of prostate cancer (PCa), even in clinical settings in which there is no evidence-based proof of prolonged overall survival (OS). ADT, however, may be associated with numerous side effects, including an increased therapy-related cardiovascular mortality. OBJECTIVE: To discuss different clinical settings in which ADT is currently used and to critically weigh the benefits of ADT against its possible side effects. EVIDENCE ACQUISITION: A MEDLINE search was conducted to identify original articles and review articles addressing the efficacy and side effects of ADT for the treatment of PCa. Keywords consisted of prostate cancer, hormonal therapy, adverse effects, radical prostatectomy, and radiotherapy. The articles with the highest level of evidence for the various examined end points were identified with the consensus of all authors and were reviewed. EVIDENCE SYNTHESIS: Even short-term use of ADT may lead to numerous side effects, such as osteoporosis, obesity, sarcopenia, lipid alterations, insulin resistance, and increased risk for diabetes and cardiovascular morbidity. Despite these side effects, ADT is commonly used in various clinical settings in which a clear effect on improved OS has not been shown. CONCLUSIONS: ADT is associated with an increased risk of multiple side effects that may reduce quality of life and/or OS. Consequently, these issues should be discussed in detail with patients and their families before initiation of ADT. ADT should be used with knowledge of its potential long-term side effects and with possible lifestyle interventions, especially in settings with the highest risk-benefit ratio, to alleviate comorbidities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: EORTC trial 30891 compared immediate versus deferred androgen-deprivation therapy (ADT) in T0-4 N0-2 M0 prostate cancer (PCa). Many patients randomly assigned to deferred ADT did not require ADT because they died before becoming symptomatic. The question arises whether serum prostate-specific antigen (PSA) levels may be used to decide when to initiate ADT in PCa not suitable for local curative treatment. METHODS: PSA data at baseline, PSA doubling time (PSADT) in patients receiving no ADT, and time to PSA relapse (>2 ng/ml) in patients whose PSA declined to <2 ng/ml within the first year after immediate ADT were analyzed in 939 eligible patients randomly assigned to immediate (n=468) or deferred ADT (n=471). RESULTS: In both arms, patients with a baseline PSA>50 ng/ml were at a>3.5-fold higher risk to die of PCa than patients with a baseline PSA12 mo. Time to PSA relapse after response to immediate ADT correlated significantly with baseline PSA, suggesting that baseline PSA may also reflect disease aggressiveness. CONCLUSIONS: Patients with a baseline PSA>50 ng/ml and/or a PSADT<12 mo were at increased risk to die from PCa and might have benefited from immediate ADT, whereas patients with a baseline PSA<50 ng/ml and a slow PSADT (>12 mo) were likely to die of causes unrelated to PCa, and thus could be spared the burden of immediate ADT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of subjective sleep and sleep electroencephalogram (EEG) after hemispheric stroke have been rarely studied and the relationship of sleep variables to stroke outcome is essentially unknown. We studied 27 patients with first hemispheric ischaemic stroke and no sleep apnoea in the acute (1-8 days), subacute (9-35 days), and chronic phase (5-24 months) after stroke. Clinical assessment included estimated sleep time per 24 h (EST) and Epworth sleepiness score (ESS) before stroke, as well as EST, ESS and clinical outcome after stroke. Sleep EEG data from stroke patients were compared with data from 11 hospitalized controls and published norms. Changes in EST (>2 h, 38% of patients) and ESS (>3 points, 26%) were frequent but correlated poorly with sleep EEG changes. In the chronic phase no significant differences in sleep EEG between controls and patients were found. High sleep efficiency and low wakefulness after sleep onset in the acute phase were associated with a good long-term outcome. These two sleep EEG variables improved significantly from the acute to the subacute and chronic phase. In conclusion, hemispheric strokes can cause insomnia, hypersomnia or changes in sleep needs but only rarely persisting sleep EEG abnormalities. High sleep EEG continuity in the acute phase of stroke heralds a good clinical outcome.