155 resultados para Sacroiliac Joint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis is thought to be caused by a combination of intrinsic vulnerabilities of the joint, such as anatomic shape and alignment, and environmental factors, such as body weight, injury, and overuse. It has been postulated that much of osteoarthritis is due to anatomic deformities. Advances in surgical techniques such as the periacetabular osteotomy, safe surgical dislocation of the hip, and hip arthroscopy have provided us with effective and safe tools to correct these anatomical problems. The limiting factor in treatment outcome in many mechanically compromised hips is the degree of cartilage damage which has occurred prior to treatment. In this regard, the role of imaging, utilizing plain radiographs in conjunction with magnetic resonance imaging, is becoming vitally important for the detection of these anatomic deformities and pre-radiographic arthritis. In this article, we will outline the plain radiographic features of hip deformities that can cause instability or impingement. Additionally, we will illustrate the use of MRI imaging to detect subtle anatomic abnormalities, as well as the use of biochemical imaging techniques such as dGEMRIC to guide clinical decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. MATERIALS AND METHODS: Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. RESULTS: Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. CONCLUSION: In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine differences between hypermobile subjects and controls in terms of maximum strength, rate of force development, and balance. METHODS: We recruited 13 subjects with hypermobility and 18 controls. Rate of force development and maximal voluntary contraction (MVC) during single leg knee extension of the right knee were measured isometrically for each subject. Balance was tested twice on a force plate with 15-second single-leg stands on the right leg. Rate of force development (N/second) and MVC (N) were extracted from the force-time curve as maximal rate of force development (= limit Deltaforce/Deltatime) and the absolute maximal value, respectively. RESULTS: The hypermobile subjects showed a significantly higher value for rate of force development (15.2% higher; P = 0.038, P = 0.453, epsilon = 0.693) and rate of force development related to body weight (16.4% higher; P = 0.018, P = 0.601, epsilon = 0.834) than the controls. The groups did not differ significantly in MVC (P = 0.767, P = 0.136, epsilon = 0.065), and MVC related to body weight varied randomly between the groups (P = 0.921, P = 0.050, epsilon = 0.000). In balance testing, the mediolateral sway of the hypermobile subjects showed significantly higher values (11.6% higher; P = 0.034, P = 0.050, epsilon = 0.000) than that of controls, but there was no significant difference (4.9% difference; P = 0.953, P = 0.050, epsilon = 0.000) in anteroposterior sway between the 2 groups. CONCLUSION: Hypermobile women without acute symptoms or limitations in activities of daily life have a higher rate of force development in the knee extensors and a higher mediolateral sway than controls with normal joint mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN: Case report and review of the literature. OBJECTIVE: We describe the first case of a synovial cyst arising from pseudarthrosis of a previous dens fracture. The literature is reviewed and etiological, diagnostic, and therapeutic options of atlantoaxial cysts are discussed. SUMMARY OF BACKGROUND DATA: Symptomatic synovial cysts of the atlantoaxial joint are rare. To the authors' knowledge only 24 cases have been reported.A 60-year-old patient presented with bilateral hand numbness, quadrihyperreflexia, and gait deterioration. Magnetic resonance imaging of the cervical spine disclosed a cystic mass located at the transverse ligament of dens axis causing bulbomedullary compression. METHODS: Surgery was performed via transoral image guided approach. The ventral atlas arch, dens, transverse ligament, tectorial membrane, and the compressing cyst were removed, followed by a C0-C3 fusion. RESULTS: Two months postsurgery the patient recovered completely from the cervical myelopathy with transient remnant dysparesthesia of the finger tips. CONCLUSION: Magnetic resonance imaging findings are not specific enough to establish a preoperative diagnosis. Radical resection via image-guided transoral route followed by posterior fusion allows complete resection of the cystic lesion and results in excellent long-term decompression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the reproducibility of dGEMRIC in the assessment of cartilage health of the adult asymptomatic hip joint. MATERIALS AND METHODS: Fifteen asymptomatic volunteers (mean age, 26.3 years +/- 3.0) were preliminarily studied. Any volunteer that was incidentally diagnosed with damaged cartilage on MRI (n = 5) was excluded. Ten patients that had no evidence of prior cartilage damage (mean age, 26.2 years +/- 3.4) were evaluated further in this study. The reproducibility of dGEMRIC was assessed with two T1(Gd) exams performed 4 weeks apart in these volunteers. The protocol involved an initial standard MRI to confirm healthy cartilage, which was then followed by dGEMRIC. The second scan included only the repeat dGEMRIC. Region of interest (ROI) analyses for T1(Gd)-measurement was performed in seven radial reformats. Statistical analysis included the student's t-test and intra-class correlation (ICC) measurement to assess reproducibility. RESULTS: Overall 70 ROIs were studied. Mean cartilage T1(Gd) values at various loci ranged from 560.9 ms to 684.4 ms at the first set of readings and 551.5 ms to 662.2 ms in the second one. The mean difference per region of interest between the two T1(Gd)-measurements ranged from 21.4 ms (3.7%) to 45.0 ms (6.8%), which was not found to be statistically significant (P = 0.153). There was a high reproducibility detected (ICC range, 0.667-0.915). Intra- and Inter-observer analyses proved a high agreement for T1(Gd) assessment (0.973 and 0.932). CONCLUSION: We found dGEMRIC to be a reliable tool in the assessment of cartilage health status in adult hip joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factors such as instability and impingement lead to early cartilage damage and osteoarthritis of the hip joint. The surgical outcome of joint-preserving surgery about the hip joint depends on the preoperative quality of joint cartilage.For in vivo evaluation of cartilage quality, different biochemically sensitive magnetic resonance imaging (MRI) procedures have been tested, some of which have the potential of inducing a paradigm shift in the evaluation and treatment of cartilage damage and early osteoarthritis.Instead of reacting to late sequelae in a palliative way, physicians could assess cartilage damage early on, and the treatment intensity could be adequate and based on the disease stage. Furthermore, the efficiency of different therapeutic interventions could be evaluated and monitored.This article reviews the recent application of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and discusses its use for assessing cartilage quality in the hip joint. dGEMRIC is more sensitive to early cartilage changes in osteoarthritis than are radiographic measures and might be a helpful tool for assessing cartilage quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees

Relevância:

20.00% 20.00%

Publicador: