146 resultados para Respiratory Sounds
Resumo:
Anthropogenic nano-sized particles (NSP), ie, particles with a diameter of less than 100 nm, are generated with or without purpose as chemically and physically well-defined materials or as a consequence of combustion processes respectively. Inhalation of NSP occurs on a regular basis due to air pollution and is associated with an increase in respiratory and cardiovascular morbidity and mortality. Manufactured NSP may intentionally be inhaled as pharmaceuticals or unintentionally during production at the workplace. Hence the interactions of NSP with the respiratory tract are currently under intensive investigation. Due to special physicochemical features of NSP, its biological behaviour may differ from that of larger sized particles. Here we review two important themes of current research into the effects of NSP on the lungs: 1) The potential of NSP to cross the blood-air barrier of the lungs, thus gaining access to the circulation and extrapulmonary organs. It is currently accepted that a small fraction of inhaled NSP may translocate to the circulation. The significance of this translocation requires further research. 2) The entering mechanisms of NSP into different cell types. There is evidence that NSP are taken up by cells via well-known pathways of endocytosis but also via different mechanisms not well understood so far. Knowledge of the quantitative relationship between the different entering mechanisms and cellular responses is not yet available but is urgently needed in order to understand the effects of intentionally or unintentionally inhaled NSP on the respiratory tract.
Resumo:
Very recently, the concept of artificial intracorporeal oxygenation of blood for patients suffering from respiratory failure has been introduced into clinical practice through development of a totally implantable intravascular oxygenator (IVOX). We report on the use of such a device in a patient who developed severe respiratory insufficiency secondary to prolonged hypovolaemic shock and pneumonia following successful repair of a ruptured abdominal aortic aneurysm in September, 1990. Postoperatively, severe hypoxaemia occurred (AaDO2 548-602 torr) despite extensive mechanical ventilatory support. There was no obvious chance to overcome this situation by conventional therapeutic measures and the decision was made to institute IVOX therapy. Hypoxaemia was resolved immediately and both FiO2 and tidal volume could be reduced within hours. The patient's respiratory condition continued to improve over the next days leading to termination of IVOX therapy after 71 hours. However, the necessity of long-term ventilatory support secondary to recurrent pneumonia and sepsis, multiple abdominal reoperations for ischemic colitis and retroperitoneal abscess prolonged his recovery. He was discharged from the hospital after four months and is alive and well now 14 months after his operation. He is the first long-term survivor after IVOX therapy in Europe. IVOX may be successfully used in selected patients while the indications and it's potential role in the therapy of severe respiratory failure still need to be defined.
Resumo:
A severe adult respiratory distress syndrome after bilateral lung contusion was successfully treated by extracorporeal membrane oxygenation and subsequent double-lung transplantation in a 19-year-old man. The patient is fully rehabilitated 1 year after transplantation.
Resumo:
Severe acute respiratory failure of varying etiology may require the temporary use of artificial gas exchange devices. So far, extracorporeal membrane oxygenation and extracorporeal carbon dioxide removal have been used successfully for this purpose. A totally implantable intravascular oxygenator (IVOX) recently became available. The authors have used IVOX in three patients who presented with severe respiratory failure secondary to pneumonia (n = 2) and post-traumatic adult respiratory distress syndrome (n = 1). At the time of implantation, all patients had hypoxemia (PaO2 less than 60) despite a 100% inspired oxygen concentration and forced mechanical ventilation. The duration of IVOX therapy ranged from 12 to 71 hr. All patients initially showed improvement in arterial oxygenation, allowing for moderate reduction of ventilator therapy after several hours. In one patient the pulmonary status deteriorated further, and she died from multiple organ failure despite IVOX therapy. One patient could be stabilized but died from other causes. The third patient is a long-term survivor 18 months after IVOX therapy. Gas transfer capabilities of IVOX are limited when compared to extracorporeal membrane oxygenation, and this may restrict its clinical applicability in cases of severe adult respiratory distress syndrome. However, IVOX may be used successfully in selected patients with less severe respiratory failure.
Resumo:
INTRODUCTION: The simple bedside method for sampling undiluted distal pulmonary edema fluid through a normal suction catheter (s-Cath) has been experimentally and clinically validated. However, there are no data comparing non-bronchoscopic bronchoalveolar lavage (mini-BAL) and s-Cath for assessing lung inflammation in acute hypoxaemic respiratory failure. We designed a prospective study in two groups of patients, those with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and those with acute cardiogenic lung edema (ACLE), designed to investigate the clinical feasibility of these techniques and to evaluate inflammation in both groups using undiluted sampling obtained by s-Cath. To test the interchangeability of the two methods in the same patient for studying the inflammation response, we further compared mini-BAL and s-Cath for agreement of protein concentration and percentage of polymorphonuclear cells (PMNs). METHODS: Mini-BAL and s-Cath sampling was assessed in 30 mechanically ventilated patients, 21 with ALI/ARDS and 9 with ACLE. To analyse agreement between the two sampling techniques, we considered only simultaneously collected mini-BAL and s-Cath paired samples. The protein concentration and polymorphonuclear cell (PMN) count comparisons were performed using undiluted sampling. Bland-Altman plots were used for assessing the mean bias and the limits of agreement between the two sampling techniques; comparison between groups was performed by using the non-parametric Mann-Whitney-U test; continuous variables were compared by using the Student t-test, Wilcoxon signed rank test, analysis of variance or Student-Newman-Keuls test; and categorical variables were compared by using chi-square analysis or Fisher exact test. RESULTS: Using protein content and PMN percentage as parameters, we identified substantial variations between the two sampling techniques. When the protein concentration in the lung was high, the s-Cath was a more sensitive method; by contrast, as inflammation increased, both methods provided similar estimates of neutrophil percentages in the lung. The patients with ACLE showed an increased PMN count, suggesting that hydrostatic lung edema can be associated with a concomitant inflammatory process. CONCLUSIONS: There are significant differences between the s-Cath and mini-BAL sampling techniques, indicating that these procedures cannot be used interchangeably for studying the lung inflammatory response in patients with acute hypoxaemic lung injury.
Resumo:
Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study, we show that a 26 degrees C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence factor of M. catarrhalis, by prolonging messenger RNA half-life. Cold shock promotes M. catarrhalis adherence to upper respiratory tract cells via enhanced binding to fibronectin, an extracellular matrix component that mediates bacterial attachment. Exposure of M. catarrhalis to 26 degrees C increases the outer membrane protein-mediated release of the proinflammatory cytokine interleukin 8 in pharyngeal epithelial cells. Furthermore, cold shock at 26 degrees C enhances the binding of salivary immunoglobulin A on the surface of M. catarrhalis. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C affects the nasopharyngeal host-pathogen interaction and may contribute to M. catarrhalis virulence.
Resumo:
Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specific or generic real-time PCR assays. We then sequenced the 5 untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identified the large genotypic diversity of rhinoviruses circulating in humans. We identified and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confirming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identified recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifies the diversity and explains the reasons for evolution of these viruses.
Resumo:
BACKGROUND: Cystic fibrosis (CF) is associated with the appearance of serum autoantibodies directed against bactericidal/permeability-increasing protein (BPI). OBJECTIVES: To determine the age-specific seroprevalence rates of anti-BPI-IgG and IgA in a population of patients with CF and to correlate anti-BPI antibody concentrations with microbial respiratory tract colonization and pulmonary function variables at the time of serum sampling and 6 years thereafter. METHODS: Determination of BPI antibodies of the IgG and IgA isotypes using a commercial enzyme-linked immunosorbent assay in sera of a CF serum bank of 1992; correlation of anti-BPI antibody concentrations with age, clinical score, pulmonary function variables in 1992 and 1998, total serum immunoglobulin isotype concentrations and respiratory tract colonization with Pseudomonas aeruginosa and Aspergillus spp. RESULTS: Seventy-one patients (age in 1992, 14.1 +/- 7.5 years) were studied. Reactivities for anti-BPI-IgG and IgA were found in 28 (39%) and 26 (37%) patients, respectively. The seroprevalence of anti-BPI-IgA, but not IgG, increased significantly with age. P. aeruginosa colonization was associated with elevated concentrations of anti-BPI-IgG (P = 0.003) and IgA (P = 0.037). There were significant negative correlations between pulmonary function variables (vital capacity, forced expiratory volume in 1 s) in 1992 and 1998, respectively, and concentrations of anti-BPI-IgG or IgA in a multiple regression analysis. Anti-BPI-IgG, but not IgA, remained significantly associated with P. aeruginosa colonization (P = 0.006) and with reduced vital capacity (P = 0.01) in 1998 after correction for total serum isotype concentration. CONCLUSIONS: Anti-BPI-IgG are strongly associated with concurrent P. aeruginosa colonization and with long term restrictive pulmonary function abnormalities.
Resumo:
OBJECTIVE: Severe respiratory distress syndrome (RDS) caused by surfactant deficiency is described not only in preterm infants but also in (near-) term babies after caesarean section (CS), especially when carried out before the onset of labour. The aim of the present study was to document the severity of this theoretically avoidable entity in order to improve obstetric and perinatal care. PATIENTS: All neonates admitted to the paediatric intensive care unit of the University Hospital of Bern between 1988 and 2000 with RDS on the basis of hyaline membrane disease (HMD) needing mechanical ventilation (MV) after CS and with a birthweight > or = 2500 g were analysed. HMD was diagnosed when respiratory distress and the typical radiological signs were present. Patients were grouped into elective CS before onset of labour and before rupture of membranes (group 1, n = 34) and patients delivered by emergency CS or CS after onset of labour or rupture of membranes (group 2, n = 22). Analysed indices for severity of illness were duration of stay in intensive care unit and MV, ventilation mode, worst oxygenation index (OI), presence of pulmonary air leak, and systemic hypotension. RESULTS: Mean gestational age (GA) was 37 2/7 weeks in group 1 and 36 2/7 weeks in group 2; no patient had a GA of > or = 39 0/7 weeks. Duration of MV was 4.4 days in group 1 and 3.9 days in group 2. Thirteen patients (38%) of group 1 and 7 (32%) of group 2 had to be managed by rescue high-frequency ventilation. A total of 7 patients had an OI>40. Eight patients (24%) in group 1 and 4 (18%) in group 2 developed a pulmonary air leak. Fourteen neonates (41%) in group 1 had to be supported by catecholamines versus 5 (22%) in group 2. There was one death in group 1. CONCLUSION: Severe RDS on the basis of HMD can also occur in near-term babies after CS; even a fatal outcome can not be excluded. The severity of illness in elective CS without labour may be quite high and is comparable to newborns delivered by CS (after onset of labour and/or rupture of the membranes) who were 1 week younger. No case of HMD was found in our population when CS was carried out after completion of 39 post-menstrual weeks of gestation.
Resumo:
Six full-term newborn infants are described who suffered from severe adult respiratory distress syndrome (ARDS). The triggering event was intrauterine/perinatal asphyxia in five, and group B streptococcal (GBS) septicemia in three. All had severe respiratory distress/failure and were ventilated mechanically with high concentrations of inspired oxygen and positive end-expiratory pressure. Radiography of the chest showed dense bilateral consolidation with air bronchograms and reduced lung volume. Persistent pulmonary hypertension (PPH) was documented in all cases. The coincidence of ARDS and PPH rendered respiratory management extremely difficult. For this reason high-frequency ventilation was instituted in all patients in order to improve CO2 elimination and induce respiratory alkalosis. Acute complications of respiratory therapy were encountered in five patients (pneumothorax, pulmonary interstitial emphysema, pneumopericardium). Three infants died (irreversible septic shock, progressive severe hypoxemia, and sudden cardiac arrest) after 17, 80, and 175 h of life. Histologic examination of the lungs was possible in all fatal cases and revealed typical changes of acute to subacute stages of ARDS. Three infants survived, the mean time of mechanical respiratory support being 703 h. Two patients were still dependent on oxygen after 1 month of life, and all survivors had increased interstitial markings and increased lung volumes on their chest roentgenograms at this time.
Resumo:
CONTEXT: Thyroid transcription factor 1 (TITF1/NKX2.1) is expressed in the thyroid, lung, ventral forebrain, and pituitary. In the lung, TITF1/NKX2.1 activates the expression of genes critical for lung development and function. Titf/Nkx2.1(-/-) mice have pituitary and thyroid aplasia but also impairment of pulmonary branching. Humans with heterozygous TITF1/NKX2.1 mutations present with various combinations of primary hypothyroidism, respiratory distress, and neurological disorders. OBJECTIVE: The objective of the study was to report clinical and molecular studies of the first patient with lethal neonatal respiratory distress from a novel heterozygous TITF1/NKX2.1 mutation. Participant: This girl, the first child of healthy nonconsanguineous French-Canadian parents, was born at 41 wk. Birth weight was 3,460 g and Apgar scores were normal. Soon after birth, she developed acute respiratory failure with pulmonary hypertension. At neonatal screening on the second day of life, TSH was 31 mU/liter (N <15) and total T(4) 245 nmol/liter (N = 120-350). Despite mechanical ventilation, thyroxine, surfactant, and pulmonary vasodilators, the patient died on the 40th day. RESULTS: Histopathology revealed pulmonary tissue with low alveolar counts. The thyroid was normal. Sequencing of the patient's lymphocyte DNA revealed a novel heterozygous TITF1/NKX2.1 mutation (I207F). This mutation was not found in either parent. In vitro, the mutant TITF-1 had reduced DNA binding and transactivation capacity. CONCLUSION: This is the first reported case of a heterozygous TITF1/NKX2.1 mutation leading to neonatal death from respiratory failure. The association of severe unexplained respiratory distress in a term neonate with mild primary hypothyroidism is the clue that led to the diagnosis.
Resumo:
Coronavirus NL63 has been identified as a new member of the coronavirus genus, but its role as a cause of respiratory disease needs to be established. We studied the first episode of lower respiratory tract symptoms in a cohort of healthy neonates. NL63 was identified in 6 (7%) of 82 cases and was as frequent as other coronaviruses (9%). NL63 was recovered at the onset of symptoms and was cleared within 3 weeks in half of the cases. Our data suggests that coronavirus NL63 causes lower respiratory tract symptoms and is acquired in early life.