129 resultados para Radioactive dating
Resumo:
In studies related to deep geological disposal of radioactive waste, it is current practice to transfer external information (e.g. from other sites, from underground rock laboratories or from natural analogues) to safety cases for specific projects. Transferable information most commonly includes parameters, investigation techniques, process understanding, conceptual models and high-level conclusions on system behaviour. Prior to transfer, the basis of transferability needs to be established. In argillaceous rocks, the most relevant common feature is the microstructure of the rocks, essentially determined by the properties of clay–minerals. Examples are shown from the Swiss and French programmes how transfer of information was handled and justified. These examples illustrate how transferability depends on the stage of development of a repository safety case and highlight the need for adequate system understanding at all sites involved to support the transfer.
Resumo:
[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.
Resumo:
Diepkloof Rock Shelter offers an exceptional opportunity to study the onset and evolution of both Still Bay (SB) and Howiesons Poort (HP) techno-complexes. However, previous age estimates based on luminescence dating of burnt quartzites (Tribolo et al., 2009) and of sediments (Jacobs et al., 2008) were not in agreement. Here, we present new luminescence ages for 17 rock samples (equivalent dose estimated with a SAR-ITL protocol instead of classical MAAD-TL) as well as for 5 sediment samples (equivalent dose estimated with SAR-single grain OSL protocol) and an update of the 22 previous age estimates for burnt lithics (modified calibration and beta dose estimates). While a good agreement between the rock and sediment ages is obtained, these estimates are still significantly older than those reported by Jacobs et al. (2008). After our own analyses of the sediment from Diepkloof, it is suspected that these authors did not correctly chose the parameters for the equivalent dose determination, leading to an underestimate of the equivalent doses, and thus of the ages. From bottom to top, the mean ages are 100 ± 10 ka for stratigraphic unit (SU) Noël and 107 ± 11 ka for SU Mark (uncharacterized Lower MSA), 100 ± 10 ka for SU Lynn-Leo (Pre-SB type Lynn), 109 ± 10 ka for SUs Kim-Larry (SB), 105 ± 10 ka for SUs Kerry-Kate and 109 ± 10 ka for SU Jess (Early HP), 89 ± 8 ka for SU Jude (MSA type Jack), 77 ± 8 ka for SU John, 85 ± 9 ka for SU Fox, 83 ± 8 ka for SU Fred and 65 ± 8 ka for SU OB5 (Intermediate HP), 52 ± 5 ka for SUs OB2-4 (Late HP). This chronology, together with the technological analyses, greatly modifies the current chrono-cultural model regarding the SB and the HP and has important archaeological implications. Indeed, SB and HP no longer appear as short-lived techno-complexes with synchronous appearances for each and restricted to Oxygen Isotopic Stage (OIS) 4 across South Africa, as suggested by Jacobs et al. (2008, 2012). Rather, the sequence of Diepkloof supports a long chronology model with an early appearance of both SB and HP in the first half of OIS 5 and a long duration of the HP into OIS 3. These new dates imply that different technological traditions coexisted during OIS 5 and 4 in southern Africa and that SB and HP can no longer be considered as horizon markers.
Resumo:
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords
Resumo:
The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS C-14 dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martinez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.
Resumo:
Establishing precise age-depth relationships of high-alpine ice cores is essential in order to deduce conclusive paleoclimatic information from these archives. Radiocarbon dating of carbonaceous aerosol particles incorporated in such glaciers is a promising tool to gain absolute ages, especially from the deepest parts where conventional methods are commonly inapplicable. In this study, we present a new validation for a published C-14 dating method for ice cores. Previously C-14-dated horizons of organic material from the Juvfonne ice patch in central southern Norway (61.676 degrees N, 8.354 degrees E) were used as reference dates for adjacent ice layers, which were C-14 dated based on their particulate organic carbon (POC) fraction. Multiple measurements were carried out on 3 sampling locations within the ice patch featuring modern to multimillennial ice. The ages obtained from the analyzed samples were in agreement with the given age estimates. In addition to previous validation work, this independent verification gives further confidence that the investigated method provides the actual age of the ice.
Resumo:
The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10(-20) to 10(-21) m(2) and a moderate anisotropy ratio < 10. Porosity depends on clay content and burial depth; values of similar to 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30 of voids can be classed as macropores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drillcores demonstrate that gas transport through the rock is accompanied by porewater displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macropores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gasfracs). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance.