78 resultados para RIBOSOMAL SEQUENCES
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-protein-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.