159 resultados para RETROGRADE SINUS PERFUSION
Resumo:
BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible.
Resumo:
This case report describes the diagnosis and treatment of a Ewing's sarcoma in the right maxillary sinus and alveolar bone of a 19-year-old female patient. The first clinical symptoms were a loss of sensitivity of the premolars and first molar in the right maxilla and acute pain located in the area of these teeth. Initially, the referring dentist had treated these findings as an acute apical periodontitis with root canal medication. Because swellings on the palatal and buccal aspects of the teeth occurred and could not be treated with incision and drainage, the dentist referred the patient. Cone-beam computed tomography revealed a proliferation of soft tissue in the right maxillary sinus, with a radiopaque material at the tip of the mesiobuccal root of the first molar and resorptive signs of the mesiobuccal and distobuccal roots of the first molar. The palatal cortical bone of the right alveolar process seemed to be intact. After explorative surgery with biopsies from the buccal, palatal, and sinus proliferation areas, the pathologist diagnosed the lesion as a Ewing's sarcoma. Treatment of the patient consisted of initial chemotherapy, hemimaxillectomy, and postsurgical chemoradiotherapy.
Resumo:
OBJECTIVES: The aim of this prospective study was to evaluate the 5-year performance and success rate of titanium screw-type implants with the titanium plasma spray (TPS) or the sand-blasted, large grit, acid-etched (SLA) surface inserted in a two-stage sinus floor elevation (SFE) procedure in the posterior maxilla. MATERIAL AND METHODS: A total of 59 delayed SFEs were performed in 56 patients between January 1997 and December 2001, using a composite graft with autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) or synthetic porous beta-tricalcium phosphate (beta-TCP). After a healing period averaging 7.75 months, 111 dental implants were inserted. After an additional 8-14-week healing period, all implants were functionally loaded with cemented crowns or fixed partial dentures. The patients were recalled at 12 and 60 months for clinical and radiographic examination. RESULTS: One patient developed an acute infection in the right maxillary sinus after SFE and did not undergo implant therapy. Two of the 111 inserted implants had to be removed because of a developing atypical facial pain, and 11 implants were lost to follow-up and were considered drop-outs. The remaining 98 implants showed favorable clinical and radiographic findings at the 5-year examination. The peri-implant soft tissues were stable over time; the mean probing depths and mean attachment levels did not change during the follow-up period. The measurement of the bone crest levels (DIB values) indicated stability as well. Based on strict success criteria, all 98 implants were considered successfully integrated, resulting in a 5-year success rate of 98% (for TPS implants 89%, for SLA implants 100%). CONCLUSION: This prospective study assessing the performance of dental implants inserted after SFE demonstrated that titanium implants can achieve and maintain successful tissue integration with high predictability for at least 5 years of follow-up in carefully selected patients.
Resumo:
INTRODUCTION: This investigation was designed to compare the histomorphometric results from sinus floor augmentation with anorganic bovine bone (ABB) and a new biphasic calcium phosphate, Straumann Bone Ceramic (BCP). MATERIALS AND METHODS: Forty-eight maxillary sinuses were treated in 37 patients. Residual bone width was > or =6 mm and height was > or =3 mm and <8 mm. Lateral sinus augmentation was used, with grafting using either ABB (control group; 23 sinuses) or BCP (test group; 25 sinuses); sites were randomly assigned to the control or test groups. After 180-240 days of healing, implant sites were created and biopsies taken for histological and histomorphometric analyses. The parameters assessed were (1) area fraction of new bone, soft tissue, and graft substitute material in the grafted region; (2) area fraction of bone and soft tissue components in the residual alveolar ridge compartment; and (3) the percentage of surface contact between the graft substitute material and new bone. RESULTS: Measurable biopsies were available from 56% of the test and 81.8% of the control sites. Histology showed close contact between new bone and graft particles for both groups, with no significant differences in the amount of mineralized bone (21.6+/-10.0% for BCP vs. 19.8+/-7.9% for ABB; P=0.53) in the biopsy treatment compartment of test and control site. The bone-to-graft contact was found to be significantly greater for ABB (48.2+/-12.9% vs. 34.0+/-14.0% for BCP). Significantly less remaining percentage of graft substitute material was found in the BCP group (26.6+/-5.2% vs. 37.7+/-8.5% for ABB; P=0.001), with more soft tissue components (46.4+/-7.7% vs. 40.4+/-7.3% for ABB; P=0.07). However, the amount of soft tissue components for both groups was found not to be greater than in the residual alveolar ridge. DISCUSSION: Both ABB and BCP produced similar amounts of newly formed bone, with similar histologic appearance, indicating that both materials are suitable for sinus augmentation for the placement of dental implants. The potential clinical relevance of more soft tissue components and different resorption characteristics of BCP requires further investigation.
Resumo:
RATIONALE AND OBJECTIVES: A feasibility study on measuring kidney perfusion by a contrast-free magnetic resonance (MR) imaging technique is presented. MATERIALS AND METHODS: A flow-sensitive alternating inversion recovery (FAIR) prepared true fast imaging with steady-state precession (TrueFISP) arterial spin labeling sequence was used on a 3.0-T MR-scanner. The basis for quantification is a two-compartment exchange model proposed by Parkes that corrects for diverse assumptions in single-compartment standard models. RESULTS: Eleven healthy volunteers (mean age, 42.3 years; range 24-55) were examined. The calculated mean renal blood flow values for the exchange model (109 +/- 5 [medulla] and 245 +/- 11 [cortex] ml/min - 100 g) are in good agreement with the literature. Most important, the two-compartment exchange model exhibits a stabilizing effect on the evaluation of perfusion values if the finite permeability of the vessel wall and the venous outflow (fast solution) are considered: the values for the one-compartment standard model were 93 +/- 18 (medulla) and 208 +/- 37 (cortex) ml/min - 100 g. CONCLUSION: This improvement will increase the accuracy of contrast-free imaging of kidney perfusion in treatment renovascular disease.
Resumo:
OBJECTIVES: The objectives of this systematic review were to assess the survival rate of implants placed in sites with transalveolar sinus floor elevation. MATERIAL AND METHODS: An electronic search was conducted to identify prospective and retrospective cohort studies on transalveolar sinus floor elevation, with a mean follow-up time of at least 1 year after functional loading. Failure and complication rates were analyzed using random-effects Poisson regression models to obtain summary estimates/ year proportions. RESULTS: The search provided 849 titles. Full-text analysis was performed for 176 articles, resulting in 19 studies that met the inclusion criteria. Meta-analysis of these studies indicated an estimated annual failure rate of 2.48% (95% confidence interval (95% CI): 1.37-4.49%) translating to an estimated survival rate of 92.8% (95% CI): 87.4-96.0%) for implants placed in transalveolarly augmented sinuses, after 3 years in function. Furthermore, subject-based analysis revealed an estimated annual failure of 3.71% (95% CI: 1.21-11.38%), translating to 10.5% (95% CI: 3.6-28.9%) of the subjects experiencing implant loss over 3 years. CONCLUSION: Survival rates of implants placed in transalveolar sinus floor augmentation sites are comparable to those in non-augmented sites. This technique is predictable with a low incidence of complications during and post-operatively.
Resumo:
OBJECTIVES: The objectives of this systematic review were to assess the survival rate of grafts and implants placed with sinus floor elevation. MATERIAL AND METHODS: An electronic search was conducted to identify studies on sinus floor elevation, with a mean follow-up time of at least 1 year after functional loading. RESULTS: The search provided 839 titles. Full-text analysis was performed for 175 articles resulting in 48 studies that met the inclusion criteria, reporting on 12,020 implants. Meta-analysis indicated an estimated annual failure rate of 3.48% [95% confidence interval (CI): 2.48%-4.88%] translating into a 3-year implant survival of 90.1% (95% CI: 86.4%-92.8%). However, when failure rates was analyzed on the subject level, the estimated annual failure was 6.04% (95% CI: 3.87%-9.43%) translating into 16.6% (95% CI: 10.9%-24.6%) of the subjects experiencing implant loss over 3 years. CONCLUSION: The insertion of dental implants in combination with maxillary sinus floor elevation is a predictable treatment method showing high implant survival rates and low incidences of surgical complications. The best results (98.3% implant survival after 3 years) were obtained using rough surface implants with membrane coverage of the lateral window.
Resumo:
PURPOSE: To prospectively determine the accuracy of 64-section computed tomographic (CT) angiography for the depiction of coronary artery disease (CAD) that induces perfusion defects at myocardial perfusion imaging with single photon emission computed tomography (SPECT), by using myocardial perfusion imaging as the reference standard. MATERIALS AND METHODS: All patients gave written informed consent after the study details, including radiation exposure, were explained. The study protocol was approved by the local institutional review board. In patients referred for elective conventional coronary angiography, an additional 64-section CT angiography study and a myocardial perfusion imaging study (1-day adenosine stress-rest protocol) with technetium 99m-tetrofosmin SPECT were performed before conventional angiography. Coronary artery diameter narrowing of 50% or greater at CT angiography was defined as stenosis and was compared with the myocardial perfusion imaging findings. Quantitative coronary angiography served as a reference standard for CT angiography. RESULTS: A total of 1093 coronary segments in 310 coronary arteries in 78 patients (mean age, 65 years +/- 9 [standard deviation]; 35 women) were analyzed. CT angiography revealed stenoses in 137 segments (13%) corresponding to 91 arteries (29%) in 46 patients (59%). SPECT revealed 14 reversible, 13 fixed, and six partially reversible defects in 31 patients (40%). Sensitivity, specificity, and negative and positive predictive values, respectively, of CT angiography in the detection of reversible myocardial perfusion imaging defects were 95%, 53%, 94%, and 58% on a per-patient basis and 95%, 75%, 96%, and 72% on a per-artery basis. Agreement between CT and conventional angiography was very good (96% and kappa = 0.92 for patient-based analysis, 93% and kappa = 0.84 for vessel-based analysis). CONCLUSION: Sixty-four-section CT angiography can help rule out hemodynamically relevant CAD in patients with intermediate to high pretest likelihood, although an abnormal CT angiography study is a poor predictor of ischemia.
Resumo:
OBJECTIVE: The purpose of the study was to measure the effects of increased inspired oxygen on patients suffering severe head injury and consequent influences on the correlations between CPP and brain tissue oxygen (PtiO2) and the effects on brain microdialysate glucose and lactate. METHODS: In a prospective, observational study 20 patients suffering severe head injury (GCS< or =8) were studied between January 2000 and December 2001. Each patient received an intraparenchymal ICP device and an oxygen sensor and, in 17 patients brain microdialysis was performed at the cortical-subcortical junction. A 6 h 100% oxygen challenge (F IO2 1.0) ( Period A) was performed as early as possible in the first 24 hours after injury and compared with a similar 6 hour period following the challenge ( Period B). Statistics were performed using the linear correlation analysis, one sample t-test, as well as the Lorentzian peak correlation analysis. RESULTS: F IO2 was positively correlated with PtiO2 (p < 0.0001) over the whole study period. PtiO2 was significantly higher (p < 0.001) during Period A compared to Period B. CPP was positively correlated with PtiO2 (p < 0.001) during the whole study. PtiO2 peaked at a CPP value of 78 mmHg performing a Lorentzian peak correlation analysis of all patients over the whole study. During Period A the brain microdialysate lactate was significantly lower (p = 0.015) compared with Period B. However the brain microdialysate glucose remained unchanged. CONCLUSION: PtiO2 is significantly positively correlated with F IO2, meaning that PtiO2 can be improved by the simple manipulation of increasing F IO2 and ABGAO2. PtiO2 is positively correlated with CPP, peaking at a CPP value of 78 mmHg. Brain microdialysate lactate can be lowered by increasing PtiO2 values, as observed during the oxygen challenge, whereas microdialysate glucose is unchanged during this procedure. Extension of the oxygen challenge time and measurement of the intermediate energy metabolite pyruvate may clarify the metabolic effects of the intervention. Prospective comparative studies, including analysis of outcome on a larger multicenter basis, are necessary to assess the long term clinical benefits of this procedure.
Resumo:
OBJECTIVES: Magnesium aspartate hydrochloride (Magnesiocard, Mg-Asp-HCl) is proposed as a substitute of magnesium sulfate for the treatment of preeclampsia and premature labor. After an i.v. administration of a dose equivalent to that used in the treatment of preeclampsia to nonpregnant volunteers, a 10-fold increase of aspartic acid (Asp) over the physiological level was observed. Animal experiments have demonstrated that highly increased fetal levels of acidic amino acids such as Asp could be associated with neurotoxic damage in the fetal brain. The influence of such an elevation of Asp concentration in the maternal circuit on the fetal level, using the in vitro perfusion model of human placenta, was investigated. STUDY DESIGN: After a control phase (2h), a therapeutic dose of Mg combined with Asp (Magnesiocard, Mg-Asp-HCl) was applied to the maternal circuit approaching 10 times the physiological level of Asp. The administration was performed in two different phases simulating either a peak of maximum concentration (bolus application, 2h) or a steady state level (initially added, 4h). RESULTS: In four experiments, during experimental phases (6h) a slow increase in concentration in the fetal circuit was seen for Mg, AIB (alpha-aminoisobutyric acid, artificial amino acid) and creatinine confirming previous observations. In contrast, no net transfer of Asp across the placenta was seen. A continuous decrease in the concentration of Asp on both maternal and fetal side suggests active uptake and metabolization by the placenta. Viability control parameters remained stable indicating the absence of an effect on placental metabolism, permeability and morphology. CONCLUSION: Elevation of Asp concentration up to 10 times the physiological level by the administration of Mg-Asp-HCl to the maternal circuit under in vitro perfusion conditions of human placenta has no influence on the fetal level of Asp suggesting no transfer of Asp from the maternal to fetal compartment. Therefore, the administration of Mg-Asp-HCl to preeclamptic patients would be beneficial for the patients without any impact on placental or fetal physiology.
Resumo:
In the dual ex vivo perfusion of an isolated human placental cotyledon it takes on average 20-30 min to set up stable perfusion circuits for the maternal and fetal vascular compartments. In vivo placental tissue of all species maintains a highly active metabolism and it continues to puzzle investigators how this tissue can survive 30 min of ischemia with more or less complete anoxia following expulsion of the organ from the uterus and do so without severe damage. There seem to be parallels between "depressed metabolism" seen in the fetus and the immature neonate in the peripartum period and survival strategies described in mammals with increased tolerance of severe hypoxia like hibernators in the state of torpor or deep sea diving turtles. Increased tolerance of hypoxia in both is explained by "partial metabolic arrest" in the sense of a temporary suspension of Kleiber's rule. Furthermore the fetus can react to major changes in surrounding oxygen tension by decreasing or increasing the rate of specific basal metabolism, providing protection against severe hypoxia as well as oxidative stress. There is some evidence that adaptive mechanisms allowing increased tolerance of severe hypoxia in the fetus or immature neonate can also be found in placental tissue, of which at least the villous portion is of fetal origin. A better understanding of the molecular details of reprogramming of fetal and placental tissues in late pregnancy may be of clinical relevance for an improved risk assessment of the individual fetus during the critical transition from intrauterine life to the outside and for the development of potential prophylactic measures against severe ante- or intrapartum hypoxia. Responses of the tissue to reperfusion deserve intensive study, since they may provide a rational basis for preventive measures against reperfusion injury and related oxidative stress. Modification of the handling of placental tissue during postpartum ischemia, and adaptation of the artificial reperfusion, may lead to an improvement of the ex vivo perfusion technique.