80 resultados para Post-traumatic stress
Resumo:
The aim of this study was to examine whether heart drawings of patients with acute myocardial infarction reflect acute distress symptoms and negative illness beliefs and predict posttraumatic stress symptoms 3 months post-myocardial infarction. In total, 84 patients aged over 18 years drew pictures of their heart. The larger the area drawn as damaged, the greater were the levels of acute distress (r = 0.36; p < 0.05), negative illness perceptions (r = 0.42, p < 0.05), and posttraumatic stress symptoms (r = 0.54, p < 0.01). Pain drawings may offer a tool to identify maladaptive cognitions and thus patients at risk of posttraumatic stress disorder.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. To address the question, whether small ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and are capable of regulating gene expression by fine-tuning the rate of protein biosynthesis (3,4). Many of the investigated ribosome-bound small ncRNA appear to be processing products from larger functional RNAs, such as tRNAs (2,3) or mRNAs (3). Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data reveal the ribosome as a target for small regulatory ncRNAs and demonstrate the existence of a yet unknown mechanism of translation regulation. Ribosome-associated ncRNAs (rancRNAs) are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Future work on the small ncRNA interactomes of ribosomes in a variety of model systems will allow deeper insight into the conservation and functional repertoire of this emerging class of regulatory ncRNA molecules.
Resumo:
OBJECTIVE This study explored whether acute serum marker S100B is related with post-concussive symptoms (PCS) and neuropsychological performance 4 months after paediatric mild traumatic brain injury (mTBI). RESEARCH DESIGN AND METHODS This prospective short-term longitudinal study investigated children (aged 6-16 years) with mTBI (n = 36, 16 males) and children with orthopaedic injuries (OI, n = 27, 18 males) as a control group. S100B in serum was measured during the acute phase and was correlated with parent-rated PCS and neuropsychological performance 4 months after the injury. MAIN OUTCOMES AND RESULTS The results revealed no between-group difference regarding acute S100B serum concentration. In children after mTBI, group-specific significant Spearman correlations were found between S100B and post-acute cognitive PCS (r = 0.54, p = 0.001) as well as S100B and verbal memory performance (r = -0.47, p = 0.006). In children after OI, there were insignificant positive relations between S100B and post-acute somatic PCS. In addition, insignificant positive correlations were found between neuropsychological outcome and S100B in children after OI. CONCLUSIONS S100B was not specific for mild brain injuries and may also be elevated after OI. The group-specific association between S100B and ongoing cognitive PCS in children after mTBI should motivate to examine further the role of S100B as a diagnostic biomarker in paediatric mTBI.
Resumo:
OBJECTIVE Acute myocardial infarction (MI) is a life-threatening condition, leading to immediate fear and distress in many patients. Approximately 18% of patients develop posttraumatic stress disorder in the aftermath of MI. Trait resilience has shown to be a protective factor for the development of posttraumatic stress disorder. However, whether this buffering effect has already an impact on peritraumatic distress and applies to patients with MI is elusive. METHODS We investigated 98 consecutive patients with acute MI within 48 hours after having reached stable circulatory conditions and 3 months thereafter. Peritraumatic distress was assessed retrospectively with three single-item questions about pain, fear, and helplessness during MI. All patients completed the Posttraumatic Diagnostic Scale (PDS) and the Resilience Scale to self-rate posttraumatic stress and trait resilience. RESULTS Multivariate models adjusting for sociodemographic and medical factors showed that trait resilience was not associated with peritraumatic distress, but significantly so with posttraumatic stress. Patients with greater trait resilience showed lower PDS scores (b = -0.06, p < .001). There was no significant relationship between peritraumatic distress scores and PDS scores; resilience did not emerge as a moderator of this relationship. CONCLUSIONS The findings suggest that trait resilience does not buffer the perception of acute MI as stressful per se but may enhance better coping with the traumatic experience in the longer term, thus preventing the development of MI-associated posttraumatic stress. Trait resilience may play an important role in posttraumatic stress symptoms triggered by medical diseases such as acute MI.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.