80 resultados para Physics -- Ecology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutrophication is an increasing global threat to freshwater ecosystems. East Africa’s Lake Victoria has suffered from severe eutrophication in the past decades which is partly responsible for the dramatic decline in haplochromine cichlid species diversity. However, some zooplanktivorous and detritivorous haplochromine species recovered and shifted their diet towards macro invertebrates and fish. We used four formalin preserved cichlid species caught over the past 35 years to investigate whether stable isotopes of these fish are reflecting the dietary changes, habitat differences and if these isotopes can be used as indicators of eutrophication. We found that d15N signatures mainly reflected dietary shifts to larger prey in all four haplochromine species. Shifts in d13C signatures likely represented habitat differences and dietary changes. In addition, a shift to remarkably heavy d13C signatures in 2011 was found for all four species which might infer increased primary production and thus eutrophication although more research is needed to confirm this hypothesis. The observed temporal changes confirm previous findings that preserved specimens can be used to trace historical changes in fish ecology and the aquatic environment. This highlights the need for continued sampling as this information could be of essence for reconstructing and predicting the effects of environmental changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclotron laboratory for radioisotope production and multi-disciplinary research at the Bern University Hospital (Inselspital) is based on an 18-MeV proton accelerator, equipped with a specifically conceived 6-m long external beam line, ending in a separate bunker. This facility allows performing daily positron emission tomography (PET) radioisotope production and research activities running in parallel. Some of the latest developments on accelerator and detector physics are reported. They encompass novel detectors for beam monitoring and studies of low current beams.