79 resultados para PEDOT:PSS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the orbiter of the Rosetta spacecraft, the Cometary Secondary Ion Mass Analyser (COSIMA) will provide new in situ insights about the chemical composition of cometary grains all along 67P/Churyumov–Gerasimenko (67P/CG) journey until the end of December 2015 nominally. The aim of this paper is to present the pre-calibration which has already been performed as well as the different methods which have been developed in order to facilitate the interpretation of the COSIMA mass spectra and more especially of their organic content. The first step was to establish a mass spectra library in positive and negative ion mode of targeted molecules and to determine the specific features of each compound and chemical family analyzed. As the exact nature of the refractory cometary organic matter is nowadays unknown, this library is obviously not exhaustive. Therefore this library has also been the starting point for the research of indicators, which enable to highlight the presence of compounds containing specific atom or structure. These indicators correspond to the intensity ratio of specific peaks in the mass spectrum. They have allowed us to identify sample containing nitrogen atom, aliphatic chains or those containing polyaromatic hydrocarbons. From these indicators, a preliminary calibration line, from which the N/C ratio could be derived, has also been established. The research of specific mass difference could also be helpful to identify peaks related to quasi-molecular ions in an unknown mass spectrum. The Bayesian Positive Source Separation (BPSS) technique will also be very helpful for data analysis. This work is the starting point for the analysis of the cometary refractory organic matter. Nevertheless, calibration work will continue in order to reach the best possible interpretation of the COSIMA observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of polyoxymethylene (POM) in cometary grains has been debated years ago. Although never proven, its presence can not be excluded. Rosetta, the ESA mission to comet 67P/Churyumov–Gerasimenko, may answer this question. On board the spacecraft, COSIMA (COmetary Secondary Ion Mass Analyzer) will analyze the grains ejected from the nucleus using a Time Of Flight Secondary Ion Mass Spectrometer (TOF-SIMS). In this paper we report the extent to which COSIMA will be able to detect POM if this compound is present on cometary grains. We have analyzed two kinds of POM polymers with a laboratory model of COSIMA. Positive mass spectra display alternating sequence of peaks with a separation of 30.011 Da between 1 and 600 Da related to formaldehyde and its oligomers but also to the fragmentation of these oligomers. The separation of 30.011 Da of numbers peaks, corresponding to the fragmentation into H2CO is characteristic of POM and we show that it could be highlight by mathematical treatment. POM lifetime on COSIMA targets have also been studied as POM is thermally instable. It can be concluded that the cometary grains analysis have to be planned not too long after their collection in order to maximize the chances to detect POM. This work was supported by the Centre National d'Etudes Spatiales (CNES).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.