96 resultados para Organ donors Infection, Kidney Transplant, Systemic Inflammatory Response Syndrome (SIRS)
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.
Resumo:
AIM: This pilot study seeks to determine whether contact system activation (CSA) occurs in human sepsis patients and to characterise blood levels of the 47kD light chain of high-molecular weight kininogen (47kD HK). METHODS: Six consecutive patients with clinical suspicion of sepsis were evaluated on days 1, 2, 3 and 6-8 for 47kD HK blood levels expressed in U/ml of whole blood and as percent of total HK. 47kD HK was measured in whole blood by quantitative immunoblot analysis. RESULTS: On study day 1 or 2, analysis of 47kD HK in U/ml of whole blood identified CSA in 3/6 patients.When 47kD HK levels were expressed as percent of total HK, 4/6 patients were identified with CSA before day 3. The degree of CSA as assayed by the presence of 47kD HK correlated with the severity of the systemic inflammatory syndrome (SIRS), i.e. mean CSA increased progressively from basal levels in healthy controls (0.08 U/ml or 10.4%) to patients without SIRS (0.10 U/ml or 15.1%), to patients with sepsis (0.12 U/ml or 15.0%), and finally to patients in a combined category of severe sepsis and septic shock (0.13 U/ml or 17.4%). CONCLUSION: CSA, defined by increased 47kD HK, occurred early on in the course of sepsis in a subset of sepsis patients. 47kD HK levels, an indicator of bradykinin release, correlated with sepsis severity. Future larger studies will need to evaluate the role of 47kD HK as a biomarker for both prognosis and treatment response in human sepsis..
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.
Resumo:
BACKGROUND: Increasing age and comorbidities among patients undergoing coronary artery bypass surgery (CABG) stimulates the exhaustive research for alternative grafts. No-React treatment should render the tissue resistant against degeneration and reduce early inflammatory response. The aim of the present study was an invasive assessment of the patency of No-React bovine internal mammary artery (NRIMA grafts) used as bypass conduit in CABG surgery. PATIENTS AND METHODS: Nineteen NRIMA grafts were used in 17 patients (2.9%) out of a total of 572 patients undergoing CABG surgery within a 12-month period. All intraoperative data were assessed and in-hospital outcome was analysed. Follow-up examination was performed 7.0+/-4.0 months after initial surgery, including clinical status and coronary angiography to assess patency of the NRIMA grafts. RESULTS: Average perioperative flow of all NRIMA grafts was 71+/-60 ml/min. One patient died in hospital due to a multi-organ failure. Four patients refused invasive assessment. Follow-up was complete in 12 patients with overall 13 NRIMA grafts. Nine NRIMA grafts (69.2%) were used for the right coronary system, two NRIMA grafts (15.4%) on the LAD and two on the circumflex artery. Graft patency was 23.1% and was independent of the intraoperative flow measurement. CONCLUSIONS: NRIMA grafts show a very low patency and cannot be recommended as coronary bypass graft conduits. Patency was independent of the perioperative flow, assessed by Doppler ultrasound. Because of this unsatisfying observation, this type of graft should be utilised as a last resource conduit and used only to revascularise less important target vessels, such as the end branches of the right coronary artery.
Resumo:
OBJECTIVE: The burnout syndrome has been associated with an increased risk of cardiovascular disease. The physiological mechanisms potentially involved in this link are underexplored. Knowing that a chronic low-grade systemic inflammatory state contributes to atherosclerosis, we investigated circulating cytokine levels in relation to burnout symptoms. METHODS: We studied 167 schoolteachers (median, 48 years; range, 23-63 years; 67% women) who completed the Maslach Burnout Inventory with its three subscales emotional exhaustion (EE), lack of accomplishment (LA), and depersonalization (DP). Levels of the proinflammatory cytokine tumor necrosis factor (TNF)-alpha and of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 were determined in fasting morning plasma samples. The TNF-alpha/IL-4 ratio and the TNF-alpha/IL-10 ratio were computed as two indices of increased inflammatory activity. Analyses were adjusted for demographic factors, medication, lifestyle factors (including sleep quality), metabolic factors, and symptoms of depression and anxiety. RESULTS: Higher levels of total burnout symptoms aggregating the EE, LA, and DP subscales independently predicted higher TNF-alpha levels (DeltaR(2)=.024, P=.046), lower IL-4 levels (DeltaR(2)=.021, P=.061), and a higher TNF-alpha/IL-4 ratio (DeltaR(2)=.040, P=.008). Higher levels of LA predicted decreased IL-4 levels (DeltaR(2)=.041, P=.008) and a higher TNF-alpha/IL-4 ratio (DeltaR(2)=.041, P=.007). The categorical dimensions of the various burnout scales (e.g., burnout yes vs. no) showed no independent relationship with any cytokine measure. CONCLUSION: Burnout was associated with increased systemic inflammation along a continuum of symptom severity rather than categorically. Given that low-grade systemic inflammation promotes atherosclerosis, our findings may provide one explanation for the increased cardiovascular risk previously observed in burned-out individuals.
Resumo:
Donor-specific transfusions (DST) induce allograft tolerance in animals. Evidence is growing that FoxP3+ regulatory T cells are associated with tolerance in humans. Forty-four biopsies from 69 living donor kidney transplant recipients (LDT) after DST, 53 biopsies from 69 matched deceased donor transplant recipients (DDT), obtained for graft dysfunction, and 12 biopsies from LDT without DST were retrospectively analyzed. FoxP3 positivity was more frequent in LDT/DST than in DDT biopsies (67% vs. 44%, P=0.02). Considering only biopsies with acute rejection, FoxP3 positivity was observed in 92% (11/12) after LDT/DST, but only in 50% (6/12) after DDT (P=0.03). The number of FoxP3+ T cells per total infiltrating cells in rejection biopsies was higher (P<0.05) from LDT/DST (4.1%) than from DDT or LDT (2.6%) without DST (2.5%). Six-year graft survival was better in patients with LDT/DST than with DDT (87.5% vs. 79.7%, P=0.04). The present investigation demonstrates an association between DST and FoxP3+ T cells. The effect of DST on regulatory T cells deserves further analysis in transplantation.
Resumo:
BACKGROUND: Case series of patients with a diagnosis of thrombotic thrombocytopenic purpura (TTP) have reported different frequencies of human immunodeficiency virus (HIV) infection; some series suggest that HIV infection may cause TTP. METHODS: We systematically reviewed all reports of HIV infection in case series of patients with TTP. We analyzed data from the Oklahoma TTP-HUS (hemolytic uremic syndrome) Registry, an inception cohort of 362 consecutive patients, for 1989-2007. RESULTS: Nineteen case series reported the occurrence of HIV infection at the time of diagnosis of TTP in 0%-83% of patients; individual patient data were rarely described. The Oklahoma TTP-HUS Registry determined the HIV status at the time of diagnosis of TTP in 351 (97%) of 362 patients. HIV infection was documented in 6 (1.84%; 95% CI, 0.68%-4.01%) of 326 adult patients (age, 26-51 years); follow-up data were complete for all 6 patients. The period prevalence of HIV infection among all adults in the Oklahoma TTP-HUS Registry region for 1989-2007 was 0.30%. One patient had typical features of TTP with 5 relapses. Five patients had single episodes; in 4, the clinical features that had initially suggested the diagnosis of TTP were subsequently attributed to malignant hypertension (in 3 patients) and disseminated Kaposi sarcoma (in 1 patient). CONCLUSIONS: HIV infection, similar to other inflammatory conditions, may trigger acute episodes of TTP in susceptible patients. More commonly, acquired immunodeficiency syndrome-related disorders may mimic the clinical features of TTP. If the diagnosis of TTP is suggested in a patient with HIV infection, there should be careful evaluation for alternative diagnoses and cautious consideration of plasma exchange, the required treatment for TTP.
Resumo:
INTRODUCTION: The inflammatory response to an invading pathogen in sepsis leads to complex alterations in hemostasis by dysregulation of procoagulant and anticoagulant factors. Recent treatment options to correct these abnormalities in patients with sepsis and organ dysfunction have yielded conflicting results. Using thromboelastometry (ROTEM(R)), we assessed the course of hemostatic alterations in patients with sepsis and related these alterations to the severity of organ dysfunction. METHODS: This prospective cohort study included 30 consecutive critically ill patients with sepsis admitted to a 30-bed multidisciplinary intensive care unit (ICU). Hemostasis was analyzed with routine clotting tests as well as thromboelastometry every 12 hours for the first 48 hours, and at discharge from the ICU. Organ dysfunction was quantified using the Sequential Organ Failure Assessment (SOFA) score. RESULTS: Simplified Acute Physiology Score II and SOFA scores at ICU admission were 52 +/- 15 and 9 +/- 4, respectively. During the ICU stay the clotting time decreased from 65 +/- 8 seconds to 57 +/- 5 seconds (P = 0.021) and clot formation time (CFT) from 97 +/- 63 seconds to 63 +/- 31 seconds (P = 0.017), whereas maximal clot firmness (MCF) increased from 62 +/- 11 mm to 67 +/- 9 mm (P = 0.035). Classification by SOFA score revealed that CFT was slower (P = 0.017) and MCF weaker (P = 0.005) in patients with more severe organ failure (SOFA >or= 10, CFT 125 +/- 76 seconds, and MCF 57 +/- 11 mm) as compared with patients who had lower SOFA scores (SOFA <10, CFT 69 +/- 27, and MCF 68 +/- 8). Along with increasing coagulation factor activity, the initially increased International Normalized Ratio (INR) and prolonged activated partial thromboplastin time (aPTT) corrected over time. CONCLUSIONS: Key variables of ROTEM(R) remained within the reference ranges during the phase of critical illness in this cohort of patients with severe sepsis and septic shock without bleeding complications. Improved organ dysfunction upon discharge from the ICU was associated with shortened coagulation time, accelerated clot formation, and increased firmness of the formed blood clot when compared with values on admission. With increased severity of illness, changes of ROTEM(R) variables were more pronounced.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
BACKGROUND The possible impact of coinfection with the Kaposi sarcoma-associated herpes virus (KSHV) on the response to antiretroviral therapy (ART) is unknown. Prospective studies are rare, particularly in Africa. METHODS We enrolled a prospective cohort of HIV-infected adults initiating ART in Johannesburg, South Africa. The subjects were defined as seropositive to KSHV if they were reactive to either KSHV lytic K8.1 or latent Orf73 antigen or to both. The subjects were followed from ART initiation until 18 months of treatment. HIV viral load and CD4 counts were tested 6 monthly. Linear generalized estimating and log-binomial regression models were used to estimate the effect of KSHV infection on immunologic recovery and response and HIV viral load suppression within 18 months after ART initiation. RESULTS Three hundred eighty-five subjects initiating ART from November 2008 to March 2009 were considered to be eligible including 184 (48%) KSHV+. The KSHV+ group was similar to the KSHV- in terms of age, gender, initiating CD4 count, body mass index, tuberculosis, and hemoglobin levels. The KSHV+ group gained a similar number of cells at 6 [difference of 10 cells per cubic millimeter, 95% confidence interval (CI): -11 to 31], 12 (3 cells per cubic millimeter, 95% CI: -19 to 25), and 18 months (24 cells per cubic millimeter, 95% CI: -13 to 61) compared with that gained by the KSHV- group. Adjusted relative risk of failure to suppress viral load to <400 copies per milliliter (1.03; 95% CI: 0.90 to 1.17) were similar for KSHV+ and KSHV- by 6 months on treatment. CONCLUSIONS In a population with a high KSHV prevalence, HIV-positive adults coinfected with KSHV achieved similar immunologic and virologic responses to ART early after treatment initiation compared with those with KSHV-.
Resumo:
BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.
Resumo:
BACKGROUND The brain's inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). METHODS CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. RESULTS Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ , MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1 β, IL-1RA, IL-6, and TGF-α were significantly higher. CONCLUSION The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.
Resumo:
Bacterial meningitis is a severe inflammatory disease of the central nervous system and is characterized by massive infiltration of granulocytes into the cerebrospinal fluid (CSF). To assess the role of NADPH oxidase-derived reactive oxygen species (ROS) in pneumococcal meningitis, mice deficient in either the gp91 subunit (essential for functioning of the phagocyte enzyme) or the p47 subunit (essential for functioning of homologous enzymes in nonphagocytic cells) were intracisternally infected with live Streptococcus pneumoniae, and defined disease parameters were measured during the acute stage of infection. While none of the parameters measured (including CSF bacterial titers) were significantly different in gp91(-/-) and wild-type mice, the infection in p47(-/-) mice was associated with significantly increased inflammation of the subarachnoid and ventricular space, disruption of the blood-brain barrier, and the presence of interleukin-1 beta, tumor necrosis factor alpha, and matrix metalloproteinase 9 in the cortex. These changes were associated with approximately 10-fold-higher CSF bacterial titers in p47(-/-) mice than in wild-type mice (P < 0.001). In contrast to infection with live bacteria, the inflammatory response, including CSF leukocytosis, was significantly attenuated in p47(-/-) mice (but not gp91(-/-) mice) challenged with a fixed number of heat-inactivated pneumococci. Impairment of the host defense appeared to be responsible for the higher bacterial titers in p47(-/-) mice. Therefore, these results indicate that ROS generated by a gp91-independent NADPH oxidase(s) are important for establishing an adequate inflammatory response to pneumococcal CSF infection.
Resumo:
Bacterial meningitis causes neuronal apoptosis in the hippocampal dentate gyrus, which is associated with learning and memory impairments after cured disease. The execution of the apoptotic program involves pathways that converge on activation of caspase-3, which is required for morphological changes associated with apoptosis. Here, the time course and the role of caspase-3 in neuronal apoptosis was assessed in an infant rat model of pneumococcal meningitis. During clinically asymptotic meningitis (0-12 h after infection), only minor apoptotic damage to the dentate gyrus was observed, while the acute phase (18-24 h) was characterized by a massive increase of apoptotic cells, which peaked at 36 h. In the subacute phase of the disease (36-72 h), the number of apoptotic cells decreased to control levels. Enzymatic caspase-3 activity was significantly increased in hippocampal tissue of infected animals compared to controls at 22 h. The activated enzyme was localized to immature cells of the dentate gyrus, and in vivo activity was evidenced by cleavage of the amyloid-beta precursor protein. Intracisternal administration of the caspase-3-specific inhibitor Ac-DEVD-CHO significantly reduced apoptosis in the hippocampal dentate gyrus. In contrast to a study where the decrease of hippocampal apoptosis after administration of a pan-caspase inhibitor was due to downmodulation of the inflammatory response, our data demonstrate that specific inhibition of caspase-3 did not affect inflammation assessed by TNF-alpha and IL-1beta concentrations in the cerebrospinal fluid space. Taken together, the present results identify caspase-3 as a key effector of neuronal apoptosis in pneumococcal meningitis.