90 resultados para NONVIRAL GENE-THERAPY
Resumo:
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.
Resumo:
BACKGROUND: HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. METHODS: The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. RESULTS: Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. CONCLUSIONS: Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.
Resumo:
A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.
Resumo:
OBJECTIVE: To describe the electronic medical databases used in antiretroviral therapy (ART) programmes in lower-income countries and assess the measures such programmes employ to maintain and improve data quality and reduce the loss of patients to follow-up. METHODS: In 15 countries of Africa, South America and Asia, a survey was conducted from December 2006 to February 2007 on the use of electronic medical record systems in ART programmes. Patients enrolled in the sites at the time of the survey but not seen during the previous 12 months were considered lost to follow-up. The quality of the data was assessed by computing the percentage of missing key variables (age, sex, clinical stage of HIV infection, CD4+ lymphocyte count and year of ART initiation). Associations between site characteristics (such as number of staff members dedicated to data management), measures to reduce loss to follow-up (such as the presence of staff dedicated to tracing patients) and data quality and loss to follow-up were analysed using multivariate logit models. FINDINGS: Twenty-one sites that together provided ART to 50 060 patients were included (median number of patients per site: 1000; interquartile range, IQR: 72-19 320). Eighteen sites (86%) used an electronic database for medical record-keeping; 15 (83%) such sites relied on software intended for personal or small business use. The median percentage of missing data for key variables per site was 10.9% (IQR: 2.0-18.9%) and declined with training in data management (odds ratio, OR: 0.58; 95% confidence interval, CI: 0.37-0.90) and weekly hours spent by a clerk on the database per 100 patients on ART (OR: 0.95; 95% CI: 0.90-0.99). About 10 weekly hours per 100 patients on ART were required to reduce missing data for key variables to below 10%. The median percentage of patients lost to follow-up 1 year after starting ART was 8.5% (IQR: 4.2-19.7%). Strategies to reduce loss to follow-up included outreach teams, community-based organizations and checking death registry data. Implementation of all three strategies substantially reduced losses to follow-up (OR: 0.17; 95% CI: 0.15-0.20). CONCLUSION: The quality of the data collected and the retention of patients in ART treatment programmes are unsatisfactory for many sites involved in the scale-up of ART in resource-limited settings, mainly because of insufficient staff trained to manage data and trace patients lost to follow-up.
Resumo:
OBJECTIVE: To analyse the early loss of patients to antiretroviral therapy (ART) programmes in resource-limited settings. METHODS: Using data on 5491 adult patients starting ART (median age 35 years, 46% female) in 15 treatment programmes in Africa, Asia and South America with (3) 12 months of follow-up, we investigated risk factors for no follow-up after treatment initiation, and loss to follow-up or death in the first 6 months. FINDINGS: Overall, 211 patients (3.8%) had no follow-up, 880 (16.0%) were lost to follow-up and 141 (2.6%) were known to have died in the first 6 months. The probability of no follow-up was higher in 2003-2004 than in 2000 or earlier (odds ratio, OR: 5.06; 95% confidence interval, CI: 1.28-20.0), as was loss to follow-up (hazard ratio, HR: 7.62; 95% CI: 4.55-12.8) but not recorded death (HR: 1.02; 95% CI: 0.44-2.36). Compared with a baseline CD4-cell count (3) 50 cells/microl, a count < 25 cells/microl was associated with a higher probability of no follow-up (OR: 2.49; 95% CI: 1.43-4.33), loss to follow-up (HR: 1.48; 95% CI: 1.23-1.77) and death (HR: 3.34; 95% CI: 2.10-5.30). Compared to free treatment, fee-for-service programmes were associated with a higher probability of no follow-up (OR: 3.71; 95% CI: 0.97-16.05) and higher mortality (HR: 4.64; 95% CI: 1.11-19.41). CONCLUSION: Early patient losses were increasingly common when programmes were scaled up and were associated with a fee for service and advanced immunodeficiency at baseline. Measures to maximize ART programme retention are required in resource-poor countries.
Resumo:
NV1FGF is an expression plasmid encoding sp.FGF-1(21-154) currently under investigation for therapeutic angiogenesis in clinical trials. NV1FGF plasmid distribution and transgene expression following intramuscular (IM) injection in patients is unknown. The study involved six patients with chronic critical limb ischemia (CLI) planned to undergo amputation. A total dose of 0.5, 2, or 4 mg NV1FGF was administered as eight IM injections (0.006, 0.25, or 0.5 mg per injection) 3-5 days before amputation. Injected sites (30 cm(3)) were divided into equally sized smaller pieces to assess spatial distribution of NV1FGF sequences (PCR), NV1FGF mRNA (reverse transcriptase-PCR), and fibroblast growth factor-1 (FGF-1)-expressing cells (immunohistochemistry). Data indicated gene expression at all doses. The distribution area was within 5-12 cm for NV1FGF sequences containing the expression cassette, up to 5 cm for NV1FGF mRNA, and up to 3 cm for FGF-1-expressing myofibers. All FGF receptors were detected indicating robust potential for bioactivity after NV1FGF gene transfer. Circulating levels of NV1FGF sequences were shown to decrease within days after injection. Data support demonstration of plasmid-mediated gene transfer and expression in muscles from patients with CLI. FGF-1 expression was shown to be limited to injection sites, which supports the concept of multiple-site injection for therapeutic use.
Resumo:
We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.
Resumo:
Skeletal muscle complaints are a common consequence of cholesterol-lowering therapy. Transverse tubular (T-tubular) vacuolations occur in patients having statin-associated myopathy and, to a lesser extent, in statin-treated patients without myopathy. We have investigated quantitative changes in T-tubular morphology and looked for early indicators of T-tubular membrane repair in skeletal muscle biopsy samples from patients receiving cholesterol-lowering therapy who do not have myopathic side effects. Gene expression and protein levels of incipient membrane repair proteins were monitored in patients who tolerated statin treatment without myopathy and in statin-naive subjects. In addition, morphometry of the T-tubular system was performed. Only the gene expression for annexin A1 was up-regulated, whereas the expression of other repair genes remained unchanged. However, annexin A1 and dysferlin protein levels were significantly increased. In statin-treated patients, the volume fraction of the T-tubular system was significantly increased, but the volume fraction of the sarcoplasmic reticulum remained unchanged. A complex surface structure in combination with high mechanical loads makes skeletal muscle plasma membranes susceptible to injury. Ca(2+)-dependent membrane repair proteins such as dysferlin and annexin A1 are deployed at T-tubular sites. The up-regulation of annexin A1 gene expression and protein points to this protein as a biomarker for T-tubular repair.
Resumo:
The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to eliminate the disease in Alaskan Malamutes.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
BACKGROUND: Influence of genetic variants in the NOD2 gene may play a more important role in disease activity, behaviour and treatment of pediatric- than adult-onset Crohn's disease (CD). METHODS: 85 pediatric- and 117 adult-onset CD patients were tested for the three main NOD2 CD-associated variants (p.R702W, p.G908R and p.10007fs) and clinical data of at least two years of follow-up were compared regarding disease behaviour and activity, response to therapy and bone mineral density (BMD). RESULTS: Chronic active and moderate to severe course of CD is associated in patients with pediatric-onset (p=0.0001) and NOD2 variant alleles (p=0.0001). In pediatric-onset CD the average PCDAI-Score was significantly higher in patients carrying NOD2 variants (p=0.0008). In addition, underweight during course of the disease (p=0.012) was associated with NOD2 variants. Interestingly, osteoporosis was found more frequently in patients carrying NOD2 variant alleles (p=0.033), especially in pediatric-onset CD patients with homozygous NOD2 variants (p=0.037). Accordingly, low BMD in pediatric-onset CD is associated with a higher PCDAI (p=0.0092), chronic active disease (p=0.0148), underweight at diagnosis (p=0.0271) and during follow-up (p=0.0109). Furthermore, pediatric-onset CD patients with NOD2 variants are more frequently steroid-dependent or refractory (p=0.048) and need long-term immunosuppressive therapy (p=0.0213). CONCLUSIONS: These data suggests that the presence of any of the main NOD2 variants in CD is associated with osteoporosis and an age of onset dependent influence towards underweight, higher disease activity and a more intensive immunosuppressive therapy. This observation supports the idea for an early intensive treatment strategy in children and adolescent CD patients with NOD2 gene variants.
Resumo:
OBJECTIVE: The aetiology of Crohn's disease (CD) has been related to nucleotide-binding oligomerisation domain containing 2 (NOD2) and ATG16L1 gene variants. The observation of bacterial DNA translocation in patients with CD led us to hypothesise that this process may be facilitated in patients with NOD2/ATG16L1-variant genotypes, affecting the efficacy of anti-tumour necrosis factor (TNF) therapies. DESIGN: 179 patients with Crohn's disease were included. CD-related NOD2 and ATG16L1 variants were genotyped. Phagocytic and bactericidal activities were evaluated in blood neutrophils. Bacterial DNA, TNFα, IFNγ, IL-12p40, free serum infliximab/adalimumab levels and antidrug antibodies were measured. RESULTS: Bacterial DNA was found in 44% of patients with active disease versus 23% of patients with remitting disease (p=0.01). A NOD2-variant or ATG16L1-variant genotype was associated with bacterial DNA presence (OR 4.8; 95% CI 1.1 to 13.2; p=0.001; and OR 2.4; 95% CI 1.4 to 4.7; p=0.01, respectively). This OR was 12.6 (95% CI 4.2 to 37.8; p=0.001) for patients with a double-variant genotype. Bacterial DNA was associated with disease activity (OR 2.6; 95% CI 1.3 to 5.4; p=0.005). Single and double-gene variants were not associated with disease activity (p=0.19). Patients with a NOD2-variant genotype showed decreased phagocytic and bactericidal activities in blood neutrophils, increased TNFα levels in response to bacterial DNA and decreased trough levels of free anti-TNFα. The proportion of patients on an intensified biological therapy was significantly higher in the NOD2-variant groups. CONCLUSIONS: Our results characterise a subgroup of patients with CD who may require a more aggressive therapy to reduce the extent of inflammation and the risk of relapse
Resumo:
Glycogen storage disease type II is a rare multi-systemic disorder characterised by an intracellular accumulation of glycogen due a mutation in the acid alpha glucosidase (GAA) gene. The level of residual enzyme activity, the genotype and other yet unknown factors account for the broad variation of the clinical phenotype. The classical infantile form is characterised by severe muscle hypotonia and cardiomyopathy leading to early death. The late-onset form presents as a limb girdle myopathy with or without pulmonary dysfunction. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) in infants is life saving. In contrast, therapeutic efficacy of rhGAA in the late-onset form is modest. High expenses of rhGAA, on-going infusions and poor pharmacokinetic efficacy raised a discussion of the cost effectiveness of ERT in late-onset Pompe disease in Switzerland. This discussion was triggered by a Swiss federal court ruling which confirmed the reluctance of a health care insurer not to reimburse treatment costs in a 67-year-old female suffering from Pompe disease. As a consequence of this judgement ERT was stopped by all insurance companies in late-onset Pompe patients in Switzerland regardless of their clinical condition. Subsequent negotiations lead to the release of a national guideline of the management of late-onset Pompe disease. Initiation and limitation of ERT is outlined in a national Pompe registry. Reimbursement criteria are defined and individual efficacy of ERT with rhGAA is continuously monitored.
Resumo:
We investigated the clinical relevance of dihydropyrimidine dehydrogenase gene (DPYD) variants to predict severe early-onset fluoropyrimidine (FP) toxicity, in particular of a recently discovered haplotype hapB3 and a linked deep intronic splice site mutation c.1129-5923C>G. Selected regions of DPYD were sequenced in prospectively collected germline DNA of 500 patients receiving FP-based chemotherapy. Associations of DPYD variants and haplotypes with hematologic, gastrointestinal, infectious, and dermatologic toxicity in therapy cycles 1-2 and resulting FP-dose interventions (dose reduction, therapy delay or cessation) were analyzed accounting for clinical and demographic covariates. Fifteen additional cases with toxicity-related therapy delay or cessation were retrospectively examined for risk variants. The association of c.1129-5923C>G/hapB3 (4.6% carrier frequency) with severe toxicity was replicated in an independent prospective cohort. Overall, c.1129-5923G/hapB3 carriers showed a relative risk of 3.74 (RR, 95% CI = 2.30-6.09, p = 2 × 10(-5)) for severe toxicity (grades 3-5). Of 31 risk variant carriers (c.1129-5923C>G/hapB3, c.1679T>G, c.1905+1G>A or c.2846A>T), 11 (all with c.1129-5923C>G/hapB3) experienced severe toxicity (15% of 72 cases, RR = 2.73, 95% CI = 1.61-4.63, p = 5 × 10(-6)), and 16 carriers (55%) required FP-dose interventions. Seven of the 15 (47%) retrospective cases carried a risk variant. The c.1129-5923C>G/hapB3 variant is a major contributor to severe early-onset FP toxicity in Caucasian patients. This variant may substantially improve the identification of patients at risk of FP toxicity compared to established DPYD risk variants (c.1905+1G>A, c.1679T>G and c.2846A>T). Pre-therapeutic DPYD testing may prevent 20-30% of life-threatening or lethal episodes of FP toxicity in Caucasian patients.
Resumo:
The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).