84 resultados para Myocardial hypertrophy
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
BACKGROUND: A high proportion of patients with essential hypertension need a combination therapy to reach the therapeutic goal. In the present study, the tolerability and efficacy of a fixed, once daily combination of the AT1 blocker Losartan (100 mg) and the diuretic hydrochlorothiazide (HCTZ) (25 mg) for patients in the real-life situation was investigated. Special consideration was given to the results of ambulatory 24-hourblood pressure (ABP) measurements. METHODS: The open label, prospective non-interventional surveillance study took place from October 2005 to June 2006. A total of 1139 patients over 18 years in age were included whose blood pressures could not be adequately treated with HCTZ alone and for whom an individual dose titration for Losartan and HCTZ had already been performed. RESULTS: The average age (+/- standard deviation) of the patients was 61.2 +/- 11.6 years; 55.8% were men. Comorbidities were common. Specifically, left ventricular hypertrophy was present in 3.1% of the patients, coronary heart disease in 30.1%, chronic heart failure in 11.8% and status post myocardial infarction in 10.5%, respectively. In addition to the Losartan/HCTZ treatment, 61.0% of the patients received a second antihypertensive medicine. After an average treatment duration of 50.4 +/- 17.2 days, the base line systolic blood pressure of 160.8 +/- 16.3 mmHg decreased by 24.0 +/- 17.0 mmHg (-14.4%) and the diastolic blood pressure of 94.4 +/- 9.9 mmHg decreased by 11.8 +/- 10.2 mmHg (-11.8%). For the ABP measurements, the overall average systolic and diastolic blood pressures fell by 16.9 +/- 14.2 mmHg and 8.8 +/-10.3 mmHg, the day average by 17.3 +/- 14.8 mmHg and 9.0 +/- 10.2 mmHg and the night average by 15.1 +/- 17.6 mmHg and 7.8 +/- 11.7 mmHg, respectively. In twelve of the 1139 patients (1.1%), a total of 15 adverse events occurred. A causal connection with the medication was suspected in only in one case (one patient with three). CONCLUSION: The combination of Losartan/HCTZ 100/25 mg, as the exclusive therapy or in addition to other antihypertensive medicines, was for patients, many of whom who had comorbidities, in the real-life situation well tolerated and effective. The efficacy was demonstrated also during the night through ABP.
Resumo:
Intramyocardial transplantation of skeletal myoblasts augments postinfarction cardiac function. However, poor survival of injected cells limits this therapy. It is hypothesized that implantation of myoblast-based scaffolds would result in greater cell survival. Rat skeletal myoblasts were seeded on highly porous polyurethane (PU) scaffolds (7.5 x 7.5 x 2.0 mm). The effect of several scaffold pretreatments, initial cell densities, and culture periods was tested by DNA-based cell count and viability assessment. Seeded PU scaffolds were implanted on infarcted hearts and immunohistology was performed 4 weeks later. Precoating with laminin allowed the most favorable cell attachment. An initial inoculation with 5 x 10(6) cells followed by a 15-day culture period resulted in optimal myoblast proliferation. Four weeks after their implantation in rats, numerous myoblasts were found throughout the seeded patches although no sign of differentiation could be observed. This myoblast seeding technique on PU allows transfer of a large number of living myoblasts to a damaged myocardium.
Resumo:
Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.
Resumo:
AIMS: To determine the effect of anti-ischaemic drug therapy on long-term outcomes of asymptomatic patients without coronary artery disease (CAD) history but silent exercise ST-depression. METHODS AND RESULTS: In a randomized multicentre trial, 263 of 522 asymptomatic subjects without CAD but at least one CAD risk factor in whom silent ischaemia by exercise ECG was confirmed by stress imaging were asked to participate. The 54 (21%) consenting patients were randomized to anti-anginal drug therapy in addition to risk factor control (MED, n = 26) or risk factor control-only (RFC, n = 28). They were followed yearly for 11.2 +/- 2.2 years. During 483 patient-years, cardiac death, non-fatal myocardial infarction, or acute coronary syndrome requiring hospitalization or revascularization occurred in 3 (12%) of MED vs. 17 (61%) of RFC patients (P < 0.001). In addition, MED patients had consistently lower rates of exercise-induced ischaemia during follow-up, and left ventricular ejection fraction remained unchanged (-0.7%, P = 0.597) in contrast to RFC patients in whom it decreased over time (-6.0%, P = 0.006). CONCLUSION: Anti-ischaemic drug therapy and aspirin seem to reduce cardiac events in subjects with asymptomatic ischaemia type I. In such patients, exercise-induced ST-segment depression should be verified by stress imaging; if silent ischaemia is documented, anti-ischaemic drug therapy and aspirin should be considered.
Resumo:
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.
Resumo:
BACKGROUND: Intracoronary application of BM-derived cells for the treatment of acute myocardial infarction (AMI) is currently being studied intensively. Simultaneously, strict legal requirements surround the production of cells for clinical studies. Thus good manufacturing practice (GMP)-compliant collection and preparation of BM for patients with AMI was established by the Cytonet group. METHODS: As well as fulfillment of standard GMP requirements, including a manufacturing license, validation of the preparation process and the final product was performed. Whole blood (n=6) and BM (n=3) validation samples were processed under GMP conditions by gelafundin or hydroxyethylstarch sedimentation in order to reduce erythrocytes/platelets and volume and to achieve specifications defined in advance. Special attention was paid to the free potassium (<6 mmol/L), some rheologically relevant cellular characteristics (hematocrit <0.45, platelets <450 x 10(6)/mL) and the sterility of the final product. RESULTS: The data were reviewed and GMP compliance was confirmed by the German authorities (Paul-Ehrlich Institute). Forty-five BM cell preparations for clinical use were carried out following the validated methodology and standards. Additionally three selections of CD34+ BM cells for infusion were performed. All specification limits were met. Discussion In conclusion, preparation of BM cells for intracoronary application is feasible under GMP conditions. As the results of sterility testing may not be available at the time of intracoronary application, the highest possible standards to avoid bacterial and other contaminations have to be applied. The increased expense of the GMP-compliant process can be justified by higher safety for patients and better control of the final product.
Resumo:
BACKGROUND: Resistance training (RT) is safe and practicable in low-risk populations with coronary artery disease. In patients with left ventricular (LV) dysfunction after an acute ischaemic event, few data exist about the impact of RT on LV remodelling. METHODS: In this prospective, randomized, controlled study, 38 patients, after a first myocardial infarction and a maximum ejection fraction (EF) of 45%, were assigned either to combined endurance training (ET)/RT (n=17; 15 men; 54.7+/-9.4 years and EF: 40.3+/-4.5%) or to ET alone (n=21; 17 men; 57.0+/-9.6 years and EF: 41.9+/-4.9%) for 12 weeks. ET was effectuated at an intensity of 70-85% of peak heart rate; RT, between 40 and 60% of the one-repetition maximum. LV remodelling was assessed by MRI. RESULTS: No statistically significant differences between the groups in the changes of end-diastolic volume (P=0.914), LV mass (P=0.885) and EF (P=0.763) were observed. Over 1 year, the end-diastolic volume increased from 206+/-41 to 210+/-48 ml (P=0.379) vs. 183+/-44 to 186+/-52 ml (P=0.586); LV mass from 149+/-28 to 155+/-31 g (P=0.408) vs. 144+/-36 to 149+/-42 g (P=0.227) and EF from 49.1+/-12.3 to 49.3+/-12.0% (P=0.959) vs. 51.5+/-13.1 to 54.1% (P=0.463), in the ET/RT and ET groups, respectively. Peak VO2 and muscle strength increased significantly in both groups, but no difference between the groups was noticed. CONCLUSION: RT with an intensity of up to 60% of the one-repetition maximum, after an acute myocardial infarction, does not lead to a more pronounced LV dilatation than ET alone. A combined ET/RT, or ET alone, for 3 months can both increase the peak VO2 and muscle strength significantly.