212 resultados para Memory. eng
Resumo:
In the memory antisaccade task, subjects are instructed to look at an imaginary point precisely at the opposite side of a peripheral visual stimulus presented short time previously. To perform this task accurately, the visual vector, i.e., the distance between a central fixation point and the peripheral stimulus, must be inverted from one visual hemifield to the other. Recent data in humans and monkeys suggest that the posterior parietal cortex (PPC) might be critically involved in the process of visual vector inversion. In the present study, we investigated the temporal dynamics of visual vector inversion in the human PPC by using transcranial magnetic stimulation (TMS). In six healthy subjects, single pulse TMS was applied over the right PPC during a memory antisaccade task at four different time intervals: 100 ms, 217 ms, 333 ms, or 450 ms after target onset. The results indicate that for rightward antisaccades, i.e., when the visual target was presented in the left screen-half, TMS had a significant effect on saccade gain when applied 100 ms after target onset, but not later. For leftward antisaccades, i.e., when the visual target was presented in the right screen-half, a significant TMS effect on gain was found for the 333 ms and 450 ms conditions, but not for the earlier ones. This double dissociation of saccade gain suggests that the initial process of vector inversion can be disrupted 100 ms after onset of the visual stimulus and that TMS interfered with motor saccade planning based on an inversed vector signal at 333 ms and 450 ms after stimulus onset.
Resumo:
Decision-making and memory are fundamental processes for successful human behaviour. For eye movements, the frontal eye fields (FEF), the supplementary eye fields (SEF), the dorsolateral prefrontal cortex (DLPFC), the ventrolateral frontal cortex and the anterior cingulum are important for these cognitive processes. The online approach of transcranial magnetic stimulation (TMS), i.e., the application of magnetic pulses during planning and performance of saccades, allows interfering specifically with information processing of the stimulated region at a very specific time interval (chronometry of cortical processing). The paper presents studies, which showed the different roles of the FEF and DLPFC in antisaccade control. The critical time interval of DLPFC control seems to be before target onset since TMS significantly increased the percentage of antisaccade errors at that time interval. The FEF seems to be important for the triggering of correct antisaccades. Bilateral stimulation of the DLPFC could demonstrate parallel information-processing transfer in spatial working memory during memory-guided saccades.
Resumo:
Effects of the dihydropyridine, nimodipine, an antagonist at L-type calcium channels, on the memory loss in rats caused by long term alcohol consumption were examined. Either a single dose of nimodipine or 2 weeks of repeated administration was given prior to withdrawal from 8 months of alcohol consumption. Memory was measured by the object recognition test and the T maze. Both nimodipine treatments prevented the memory deficits when these were measured between 1 and 2 months after alcohol withdrawal. At the end of the memory testing, 2 months after cessation of chronic alcohol consumption, glucocorticoid concentrations were increased in specific regions of rat brain without changes in plasma concentrations. Both nimodipine treatment schedules substantially reduced these rises in brain glucocorticoid. The data indicate that blockade of L-type calcium channels prior to alcohol withdrawal protects against the memory deficits caused by prolonged alcohol intake. This shows that specific drug treatments, such as nimodipine, given over the acute withdrawal phase, can prevented the neuronal changes responsible for subsequent adverse effects of long term consumption of alcohol. The results also suggest the possibility that regional brain glucocorticoid increases may be involved in the adverse effects of long term alcohol intake on memory. Such local changes in brain glucocorticoid levels would have major effects on neuronal function. The studies indicate that L-type calcium channels and brain glucocorticoid levels could form new targets for the treatment of cognitive deficits in alcoholics.
Resumo:
OBJECTIVE: To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. METHODS: Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. RESULTS: We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. CONCLUSION: PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.
Resumo:
Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult male students were randomly assigned to either the stress or the control group, with stress being induced by the Trier Social Stress Test (TSST). Salivary cortisol levels were assessed repeatedly throughout the experiment to validate stress effects. The results support previous evidence indicating complex effects of stress on different types of memory: A pronounced working memory deficit was associated with exposure to stress. No performance differences between groups of stressed and unstressed subjects were observed in verbal explicit memory (but note that learning and recall took place within 1 h and immediately following stress) or in implicit memory for neutral stimuli. Stress enhanced classical conditioning for negative but not positive stimuli. In addition, stress improved spatial explicit memory. These results reinforce the view that acute stress can be highly disruptive for working memory processing. They provide new evidence for the facilitating effects of stress on implicit memory for negative emotional materials. Our findings are discussed with respect to their potential relevance for psychiatric disorders, such as post traumatic stress disorder.