89 resultados para Membrane-covered self-expanding metal stent (SEMS)
Resumo:
Laminin self-assembles into a basement membrane polymer through specific low-affinity interactions. Recently, it was shown that the terminal short-arm domain (domains VI and V) of the B1 chain (fragment E4) possesses one of the laminin self-interaction sites [Schittny, J.C. & Yurchenco, P.D. (1990) J. Cell Biol. 110, 825-832], but that the binding partner(s) of this domain is unknown. Using affinity retardation chromatography we now investigate the domain(s) fragment E4 binds to. The elution of E4 was clearly retarded on immobilized laminin and fragment E1' (three-chain short-arm complex excluding the distal part of the B1 chain), but not on immobilized E4 in calcium containing buffer and at 37 degrees C. Under the same conditions, E1' strongly interacts with immobilized E4. In addition, E1' is able to non-covalently cross-link soluble E4 to immobilized E4. No further interaction of laminin and E4 with additional fragments (P1', A, B2 and B1 chain short-arm complex without B1-domains VI-IV and without globules; E8, distal long arm and G1-3; E3, long-arm G subdomains 4 and 5) could be demonstrated. These data are interpreted as evidence that (a) the primary laminin-laminin bonds are formed between the short arms of laminin, that (b) the terminal B1 short-arm domain (E4) can interact with the short arm(s) of the A and/or B2 chain(s) (domain E1'), but does not self-interact, and that (c) due to at least three self-binding sites, laminin polymerization behaves co-operatively.
Resumo:
BACKGROUND This study sought to determine whether the 1-year differences in major adverse cardiac event between a stent eluting biolimus from a biodegradable polymer and bare-metal stents (BMSs) in the COMFORTABLE trial (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal Stents in Acute ST-Elevation Myocardial Infarction) were sustained during long-term follow-up. METHODS AND RESULTS A total of 1061 patients were randomly assigned to biolimus-eluting stent (BES) and BMS at 11 centers, and follow-up rates at 2 years were 96.3%. A subgroup of 103 patients underwent angiography at 13 months. At 2 years, differences in the primary end point of cardiac death, target-vessel myocardial infarction, and target lesion revascularization continued to diverge in favor of BES-treated patients (5.8%) compared with BMS-treated patients (11.9%; hazard ratio=0.48; 95% confidence interval, 0.31-0.72; P<0.001) with a significant risk reduction during the second year of follow-up (hazard ratio 1-2 years=0.45; 95% confidence interval, 0.20-1.00; P=0.049). Differences in the primary end point were driven by a reduction in target lesion revascularization (3.1% versus 8.2%; P<0.001) and target-vessel reinfarction (1.3% versus 3.4%; P=0.023). The composite of death, any reinfarction and revascularization (14.5% versus 19.3%; P=0.03), and cardiac death or target-vessel myocardial infarction (4.2% versus 7.2%; P=0.036) were less frequent among BES-treated patients compared with BMS-treated patients. The 13-month angiographic in-stent percent diameter stenosis amounted to 12.0±7.2 in BES- and 39.6±25.2 in BMS-treated lesions (P<0.001). CONCLUSIONS Among patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention, BES continued to improve cardiovascular events compared with BMS beyond 1 year.
Resumo:
A study was designed to describe a novel approach to the treatment of tracheal collapse (TC) in dogs using self-expandable nitinol stents. Medical records were reviewed retrospectively for 26 client owned dogs in which nitinol stents were deployed. The entire length of trachea was supported independently of the extent of TC. Two overlapping stents were used instead of one in cases where one stent was not spanning the entire trachea adequately. The diameter of the cranial radiolucent portion of trachea, just behind the cricoid cartilage, was measured as a specific landmark to select the appropriate size of the stent. Two self-expandable nitinol stents were inserted in 9 of 26 dogs; the trachea in the rest of the cases was supported with only one stent. A follow up tracheoscopy was performed in 10 of 26 cases with recurrent clinical signs. Secondary tracheal stenosis in these cases was caused by stent fracture, granuloma or excessive stent shortening. Additional stents were placed successfully to expand the stenotic lumen. A support of the entire trachea may decrease risk of nitinol fracture at the end of the implant. Long term clinical improvement (25 of 26 dogs, 96 %) is comparable with the results of other studies.
Resumo:
BACKGROUND In patients with cardiogenic shock, data on the comparative safety and efficacy of drug-eluting stents (DESs) vs. bare metal stents (BMSs) are lacking. We sought to assess the performance of DESs compared with BMSs among patients with cardiogenic shock undergoing percutaneous coronary intervention (PCI). METHODS Out of 236 patients with acute coronary syndromes complicated by cardiogenic shock, 203 were included in the final analysis. The primary endpoint included death, and the secondary endpoint of major adverse cardiac and cerebrovascular events (MACCEs) included the composite of death, myocardial infarction, any repeat revascularization and stroke. Patients were followed for a minimum of 30 days and up to 4 years. As stent assignment was not random, we performed a propensity score analysis to minimize potential bias. RESULTS Among patients treated with DESs, there was a lower risk of the primary and secondary endpoints compared with BMSs at 30 days (29 vs. 56%, P < 0.001; 34 vs. 58%, P = 0.001, respectively) and during long-term follow-up [hazard ratio 0.43, 95% confidence interval (CI) 0.29-0.65, P < 0.001; hazard ratio 0.49, 95% CI 0.34-0.71, P < 0.001, respectively]. After propensity score adjustment, all-cause mortality was reduced among patients treated with DESs compared with BMSs both at 30 days [adjusted odds ratio (OR) 0.26, 95% CI 0.11-0.62; P = 0.002] and during long-term follow-up (adjusted hazard ratio 0.40, 95% CI 0.22-0.72; P = 0.002). The rate of MACCE was lower among patients treated with DESs compared with those treated with BMSs at 30 days (adjusted OR 0.42, 95% CI 0.19-0.95; P = 0.036). The difference in MACCEs between devices approached significance during long-term follow-up (adjusted hazard ratio 0.60, 95% CI 0.34-1.01; P = 0.052). CONCLUSION DESs appear to be associated with improved clinical outcomes, including a reduction in all-cause mortality compared with BMSs among patients undergoing PCI for cardiogenic shock, possibly because of a pacification of the infarct-related artery by anti-inflammatory drug. The results of this observational study require confirmation in an appropriately powered randomized trial.
Resumo:
BACKGROUND Recently, it has been suggested that the type of stent used in primary percutaneous coronary interventions (pPCI) might impact upon the outcomes of patients with acute myocardial infarction (AMI). Indeed, drug-eluting stents (DES) reduce neointimal hyperplasia compared to bare-metal stents (BMS). Moreover, the later generation DES, due to its biocompatible polymer coatings and stent design, allows for greater deliverability, improved endothelial healing and therefore less restenosis and thrombus generation. However, data on the safety and performance of DES in large cohorts of AMI is still limited. AIM To compare the early outcome of DES vs. BMS in AMI patients. METHODS This was a prospective, multicentre analysis containing patients from 64 hospitals in Switzerland with AMI undergoing pPCI between 2005 and 2013. The primary endpoint was in-hospital all-cause death, whereas the secondary endpoint included a composite measure of major adverse cardiac and cerebrovascular events (MACCE) of death, reinfarction, and cerebrovascular event. RESULTS Of 20,464 patients with a primary diagnosis of AMI and enrolled to the AMIS Plus registry, 15,026 were referred for pPCI and 13,442 received stent implantation. 10,094 patients were implanted with DES and 2,260 with BMS. The overall in-hospital mortality was significantly lower in patients with DES compared to those with BMS implantation (2.6% vs. 7.1%,p < 0.001). The overall in-hospital MACCE after DES was similarly lower compared to BMS (3.5% vs. 7.6%, p < 0.001). After adjusting for all confounding covariables, DES remained an independent predictor for lower in-hospital mortality (OR 0.51,95% CI 0.40-0.67, p < 0.001). Since groups differed as regards to baseline characteristics and pharmacological treatment, we performed a propensity score matching (PSM) to limit potential biases. Even after the PSM, DES implantation remained independently associated with a reduced risk of in-hospital mortality (adjusted OR 0.54, 95% CI 0.39-0.76, p < 0.001). CONCLUSIONS In unselected patients from a nationwide, real-world cohort, we found DES, compared to BMS, was associated with lower in-hospital mortality and MACCE. The identification of optimal treatment strategies of patients with AMI needs further randomised evaluation; however, our findings suggest a potential benefit with DES.
Resumo:
The rate constants of simple electron transfer (ET) reactions in room temperature ionic liquids (ILs) available now are rather high, typically at the edge of experimental accuracy. To consider ET phenomena in these media in view of theory developed earlier for molecular solvents, it is crucial to provide quantitative comparison of experimental kinetic data for certain reactions. We report this comparison for ferrocene/ferrocenium reaction. The ET distance is fixed by Au surface modification by alkanethiol self-assembled monolayers, which were characterized by in situ scanning tunneling microscopy. The dependence of ln kapp on barrier thickness in the range of ca. 6–20 Å is linear, with a slope typical for the same plots in aqueous media. This result confirms diabatic mode of Fc oxidation at long distance. The data for shorter ET distances point to the adiabatic regime of ET at a bare gold surface, although more detailed computational studies are required to justify this conclusion.
Resumo:
BACKGROUND Numerous studies have demonstrated an association between endothelial shear stress (ESS) and neointimal formation after stent implantation. However, the role of ESS on the composition of neointima and underlying plaque remains unclear. METHODS Patients recruited in the Comfortable AMI-IBIS 4 study implanted with bare metal stents (BMS) or biolimus eluting stents (BES) that had biplane coronary angiography at 13month follow-up were included in the analysis. The intravascular ultrasound virtual-histology (IVUS-VH) and the angiographic data were used to reconstruct the luminal surface, and the stent in the stented segments. Blood flow simulation was performed in the stent surface, which was assumed to represent the luminal surface at baseline, to assess the association between ESS and neointima thickness. The predominant ESS was estimated in 3-mm segments and was correlated with the amount of neointima, neointimal tissue composition, and with the changes in the underlying plaque burden and composition. RESULTS Forty three patients (18 implanted with BMS and 25 with BES) were studied. In both stent groups negative correlations were noted between ESS and neointima thickness in BMS (P<0.001) and BES (P=0.002). In BMS there was a negative correlation between predominant ESS and the percentage of the neointimal necrotic core component (P=0.015). In BES group, the limited neointima formation did not allow evaluation of the effect of ESS on its tissue characteristics. ESS did not affect vessel wall remodeling and the plaque burden and composition behind BMS (P>0.10) and BES (P>0.45). CONCLUSIONS ESS determines neointimal formation in both BMS and BES and affects the composition of the neointima in BMS. Conversely, ESS does not impact the plaque behind struts irrespective of stent type throughout 13months of follow-up.
Resumo:
Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).
Resumo:
Our research goals are focused on the preparation of novel molecule-based materials that possess specifically designed properties in solution or in the solid state e.g. self-assembly, magnetism, conductivity and spin crossover phenomena. Most of our systems incorporate paramagnetic transition metal ions and the search for new molecule-based magnetic materials is a prominent theme. Specific areas of research include the preparation and study of oxalate based 2D and 3D magnets, probing the versatility of octacyanometalate building blocks as precursors for new molecular magnets, and the preparation of new tetrathiafulvalene (TIF) derivatives for applications in molecular and supramolecular chemistry.
Resumo:
Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.
Resumo:
OBJECTIVES This study sought to compare rates of stent thrombosis and major adverse cardiac and cerebrovascular events (MACCE) (composite of death, myocardial infarction, or stroke) after coronary stenting with drug-eluting stents (DES) versus bare-metal stents (BMS) in patients who participated in the DAPT (Dual Antiplatelet Therapy) study, an international multicenter randomized trial comparing 30 versus 12 months of dual antiplatelet therapy in subjects undergoing coronary stenting with either DES or BMS. BACKGROUND Despite antirestenotic efficacy of coronary DES compared with BMS, the relative risk of stent thrombosis and adverse cardiovascular events is unclear. Many clinicians perceive BMS to be associated with fewer adverse ischemic events and to require shorter-duration dual antiplatelet therapy than DES. METHODS Prospective propensity-matched analysis of subjects enrolled into a randomized trial of dual antiplatelet therapy duration was performed. DES- and BMS-treated subjects were propensity-score matched in a many-to-one fashion. The study design was observational for all subjects 0 to 12 months following stenting. A subset of eligible subjects without major ischemic or bleeding events were randomized at 12 months to continued thienopyridine versus placebo; all subjects were followed through 33 months. RESULTS Among 10,026 propensity-matched subjects, DES-treated subjects (n = 8,308) had a lower rate of stent thrombosis through 33 months compared with BMS-treated subjects (n = 1,718, 1.7% vs. 2.6%; weighted risk difference -1.1%, p = 0.01) and a noninferior rate of MACCE (11.4% vs. 13.2%, respectively, weighted risk difference -1.8%, p = 0.053, noninferiority p < 0.001). CONCLUSIONS DES-treated subjects have long-term rates of stent thrombosis that are lower than BMS-treated subjects. (The Dual Antiplatelet Therapy Study [DAPT study]; NCT00977938).
Resumo:
BACKGROUND Drug eluting stents with durable polymers may be associated with hypersensitivity, delayed healing, and incomplete endothelialization, which may contribute to late/very late stent thrombosis and the need for prolonged dual antiplatelet therapy. Bioabsorbable polymers may facilitate stent healing, thus enhancing clinical safety. The SYNERGY stent is a thin-strut, platinum chromium metal alloy platform with an ultrathin bioabsorbable Poly(D,L-lactide-co-glycolide) abluminal everolimus-eluting polymer. We performed a multicenter, randomized controlled trial for regulatory approval to determine noninferiority of the SYNERGY stent to the durable polymer PROMUS Element Plus everolimus-eluting stent. METHODS AND RESULTS Patients (n=1684) scheduled to undergo percutaneous coronary intervention for non-ST-segment-elevation acute coronary syndrome or stable coronary artery disease were randomized to receive either the SYNERGY stent or the PROMUS Element Plus stent. The primary end point of 12-month target lesion failure was observed in 6.7% of SYNERGY and 6.5% PROMUS Element Plus treated subjects by intention-to-treat (P=0.83 for difference; P=0.0005 for noninferiority), and 6.4% in both the groups by per-protocol analysis (P=0.0003 for noninferiority). Clinically indicated revascularization of the target lesion or definite/probable stent thrombosis were observed in 2.6% versus 1.7% (P=0.21) and 0.4% versus 0.6% (P=0.50) of SYNERGY versus PROMUS Element Plus-treated subjects, respectively. CONCLUSIONS In this randomized trial, the SYNERGY bioabsorbable polymer everolimus-eluting stent was noninferior to the PROMUS Element Plus everolimus-eluting stent with respect to 1-year target lesion failure. These data support the relative safety and efficacy of SYNERGY in a broad range of patients undergoing percutaneous coronary intervention. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01665053.
Resumo:
IMPORTANCE Despite antirestenotic efficacy of coronary drug-eluting stents (DES) compared with bare metal stents (BMS), the relative risk of stent thrombosis and adverse cardiovascular events is unclear. Although dual antiplatelet therapy (DAPT) beyond 1 year provides ischemic event protection after DES, ischemic event risk is perceived to be less after BMS, and the appropriate duration of DAPT after BMS is unknown. OBJECTIVE To compare (1) rates of stent thrombosis and major adverse cardiac and cerebrovascular events (MACCE; composite of death, myocardial infarction, or stroke) after 30 vs 12 months of thienopyridine in patients treated with BMS taking aspirin and (2) treatment duration effect within the combined cohorts of randomized patients treated with DES or BMS as prespecified secondary analyses. DESIGN, SETTING, AND PARTICIPANTS International, multicenter, randomized, double-blinded, placebo-controlled trial comparing extended (30-months) thienopyridine vs placebo in patients taking aspirin who completed 12 months of DAPT without bleeding or ischemic events after receiving stents. The study was initiated in August 2009 with the last follow-up visit in May 2014. INTERVENTIONS Continued thienopyridine or placebo at months 12 through 30 after stent placement, in 11,648 randomized patients treated with aspirin, of whom 1687 received BMS and 9961 DES. MAIN OUTCOMES AND MEASURES Stent thrombosis, MACCE, and moderate or severe bleeding. RESULTS Among 1687 patients treated with BMS who were randomized to continued thienopyridine vs placebo, rates of stent thrombosis were 0.5% vs 1.11% (n = 4 vs 9; hazard ratio [HR], 0.49; 95% CI, 0.15-1.64; P = .24), rates of MACCE were 4.04% vs 4.69% (n = 33 vs 38; HR, 0.92; 95% CI, 0.57-1.47; P = .72), and rates of moderate/severe bleeding were 2.03% vs 0.90% (n = 16 vs 7; P = .07), respectively. Among all 11,648 randomized patients (both BMS and DES), stent thrombosis rates were 0.41% vs 1.32% (n = 23 vs 74; HR, 0.31; 95% CI, 0.19-0.50; P < .001), rates of MACCE were 4.29% vs 5.74% (n = 244 vs 323; HR, 0.73; 95% CI, 0.62-0.87; P < .001), and rates of moderate/severe bleeding were 2.45% vs 1.47% (n = 135 vs 80; P < .001). CONCLUSIONS AND RELEVANCE Among patients undergoing coronary stent placement with BMS and who tolerated 12 months of thienopyridine, continuing thienopyridine for an additional 18 months compared with placebo did not result in statistically significant differences in rates of stent thrombosis, MACCE, or moderate or severe bleeding. However, the BMS subset may have been underpowered to identify such differences, and further trials are suggested. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00977938.
Resumo:
Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.