164 resultados para MISSENSE MUTATIONS
Resumo:
Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.
Resumo:
A spontaneous mutant (M113) of Escherichia coli AG100 with an unstable multiple antibiotic resistance (Mar) phenotype was isolated in the presence of tetracycline. Two mutations were found: an insertion in the promoter of lon (lon3::IS186) that occurred first and a subsequent large tandem duplication, dupIS186, bearing the genes acrAB and extending from the lon3::IS186 to another IS186 present 149 kb away from lon. The decreased amount of Lon protease increased the amount of MarA by stabilization of the basal quantities of MarA produced, which in turn increased the amount of multidrug effux pump AcrAB-TolC. However, in a mutant carrying only a lon mutation, the overproduced pump mediated little, if any, increased multidrug resistance, indicating that the Lon protease was required for the function of the pump. This requirement was only partial since resistance was mediated when amounts of AcrAB in a lon mutant were further increased by a second mutation. In M113, amplification of acrAB on the duplication led to increased amounts of AcrAB and multidrug resistance. Spontaneous gene duplication represents a new mechanism for mediating multidrug resistance in E. coli through AcrAB-TolC.
Resumo:
The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL.
Resumo:
The transcription factor CEBPA is crucial for normal myeloid differentiation. CEBPA gene mutations have been reported in patients with acute myeloid leukaemia. The inevitable evolution of chronic myeloid leukaemia (CML) in chronic phase (CP) to a fatal blast crisis (BC) is assumed to result from the acquisition of additional genetic changes in the leukaemic clone. Gain of CEBPA mutations might represent a key event causing the differentiation block observed in myeloid CML-BC, but not in CML-CP. Here, no CEBPA mutation in 95 CML-BC patients was found, suggesting a limited role, if any, of CEBPA mutations in this disorder.
Resumo:
In 1960, the first case report on factor XIII deficiency was published describing a seven-year-old Swiss boy with a so far unknown bleeding disorder. Today, more than 60 mutations in the factor XIIIA- and B-subunit genes are known leading to congenital factor XIII deficiency. In the present study, we describe six novel mutations in the factor XIII A-subunit gene. Additionally, we present the molecular characterisation of the first described patient with congenital factor XIII deficiency. The six novel mutations include a small deletion, Glu202 delG, leading to a premature stop codon and truncation of the protein, and a splice site mutation at the exon 10/intron 10 boundary, +1G/A, giving rise to an incorrect spliced mRNA lacking exons 10 and 11. The remaining four mutations are characterised by the single amino acid changes Met159Arg, Gly215Arg, Trp375Cys, and His716Arg, and were expressed in COS-1 cells. Antigen levels and activity of the mutants were significantly reduced compared to the wild-type. The patient described in 1960 also shows a single amino acid change, Arg77Cys. Structural analysis of all mutant enzymes suggests several mechanisms leading to destabilisation of the protein.
Resumo:
BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.
Resumo:
BACKGROUND: Dystonia is a heterogenous group of movement disorders whose clinical spectrum is very wide. At least 13 different genes and gene loci have been reported. While a 3-bp deletion in the DYT1 gene is the most frequent cause of early limb-onset, generalized dystonia, it has also been found in non-generalized forms of sporadic dystonia. An 18-bp deletion in the DYT1 gene has also been reported. OBJECTIVES: We screened for the 3-bp and 18-bp deletions in the DYT1 gene among our sporadic, adult-onset primary dystonia patients in Singapore. We reviewed the literature to compare the frequency of DYT1 mutation between the East and the West. METHODS: We screened 54 patients with primary dystonia (focal: n=41; segmental: n=11; multifocal: n=1; generalized: n=1) for the deletions in the DYT1 gene. A careful review of all published literature on DYT1 screening among sporadic, non-familial, non-Ashkenazi Jewish patients was done. RESULTS: We did not detect any mutations in the exon 5 of the DYT1 gene in any of our patients. The frequency of DYT1 mutation amongst Asians (1.0%) was comparable to the West (1.56%) (p=NS). CONCLUSIONS: DYT1 mutations are uncommon amongst adult primary dystonia patients in Singapore.
Resumo:
Very recently, heterozygous mutations in the genes encoding transforming growth factor beta receptors I (TGFBR1) and II (TGFBR2) have been reported in Loeys-Dietz aortic aneurysm syndrome (LDS). In addition, dominant TGFBR2 mutations have been identified in Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). In the past, mutations of these genes were associated with atherosclerosis and several human cancers. Here, we report a total of nine novel and one known heterozygous sequence variants in the TGFBR1 and TGFBR2 genes in nine of 70 unrelated individuals with MFS-like phenotypes who previously tested negative for mutations in the gene encoding the extracellular matrix protein fibrillin-1 (FBN1). To assess the pathogenic impact of these sequence variants, in silico analyses were performed by the PolyPhen, SIFT, and Fold-X algorithms and by means of a 3D homology model of the TGFBR2 kinase domain. Our results showed that in all but one of the patients the pathogenic effect of at least one sequence variant is highly probable (c.722C > T, c.799A > C, and c.1460G > A in TGFBR1 and c.773T > G, c.1106G > T, c.1159G > A, c.1181G > A, and c.1561T > C in TGFBR2). These deleterious alleles occurred de novo or segregated with the disease in the families, indicating a causative association between the sequence variants and clinical phenotypes. Since TGFBR2 mutations found in patients with MFS-related disorders cannot be distinguished from heterozygous TGFBR2 mutations reported in tumor samples, we emphasize the importance of segregation analysis in affected families. In order to be able to find the mutation that is indeed responsible for a MFS-related phenotype, we also propose that genetic testing for sequence alterations in TGFBR1 and TGFBR2 should be complemented by mutation screening of the FBN1 gene.
Resumo:
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.
Resumo:
Because of the current controversy on the origin and clinical value of circulating KRAS codon 12 mutations in lung cancer, we screened 180 patients using a combined restriction fragment-length polymorphism and polymerase chain reaction (RFLP-PCR) assay. We detected KRAS mutations in 9% plasma samples and 0% matched lymphocytes. Plasma KRAS mutations correlated significantly with poor prognosis. We validated the positive results in a second laboratory by DNA sequencing and found matching codon 12 sequences in blood and tumor in 78% evaluable cases. These results support the notion that circulating KRAS mutations originate from tumors and are prognostically relevant in lung cancer.
Resumo:
BACKGROUND: Little information on the management and long-term follow-up of patients with biallelic mutations in the chloride channel gene CLCNKB is available. METHODS: Long-term follow-up was evaluated from 5.0 to 24 years (median, 14 years) after diagnosis in 13 patients with homozygous (n = 10) or compound heterozygous (n = 3) mutations. RESULTS: Medical treatment at last follow-up control included supplementation with potassium in 12 patients and sodium in 2 patients and medical treatment with indomethacin in 9 patients. At the end of follow-up, body height was 2.0 standard deviation score or less in 6 patients; 2 of these patients had growth hormone deficiency. Body weight (