82 resultados para Live video
Resumo:
Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.
Resumo:
Wireless Multimedia Sensor Networks (WMSNs) promise a wide scope of emerging potential applications in both civilian and military areas, which require visual and audio information to enhance the level of collected information. The transmission of multimedia content requires a minimal video quality level from the user’s perspective. However, links in WMSN communi- cations are typically unreliable, as they often experience fluctuations in quality and weak connectivity, and thus, the routing protocol must evaluate the routes by using end-to-end link quality information to increase the packet delivery ratio. Moreover, the use multiple paths together with key video metrics can enhance the video quality level. In this paper, we propose a video-aware multiple path hierarchical routing protocol for efficient multimedia transmission over WMSN, called video-aware MMtransmission. This protocol finds node-disjoint multiple paths, and implements an end-to-end link quality estimation with minimal over- head to score the paths. Thus, our protocol assures multimedia transmission with Quality of Experience (QoE) and energy-efficiency support. The simula- tion results show the benefits of video-aware MMtransmission for disseminating video content by means of energy-efficiency and QoE analysis.
Resumo:
The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.
Resumo:
Wireless mobile sensor networks are enlarging the Internet of Things (IoT) portfolio with a huge number of multimedia services for smart cities. Safety and environmental monitoring multimedia applications will be part of the Smart IoT systems, which aim to reduce emergency response time, while also predicting hazardous events. In these mobile and dynamic (possible disaster) scenarios, opportunistic routing allows routing decisions in a completely distributed manner, by using a hop- by-hop route decision based on protocol-specific characteristics, and a predefined end-to-end path is not a reliable solution. This enables the transmission of video flows of a monitored area/object with Quality of Experience (QoE) support to users, headquarters or IoT platforms. However, existing approaches rely on a single metric to make the candidate selection rule, including link quality or geographic information, which causes a high packet loss rate, and reduces the video perception from the human standpoint. This article proposes a cross-layer Link quality and Geographical-aware Opportunistic routing protocol (LinGO), which is designed for video dissemination in mobile multimedia IoT environments. LinGO improves routing decisions using multiple metrics, including link quality, geographic loca- tion, and energy. The simulation results show the benefits of LinGO compared with well-known routing solutions for video transmission with QoE support in mobile scenarios.
Resumo:
We study state-based video communication where a client simultaneously informs the server about the presence status of various packets in its buffer. In sender-driven transmission, the client periodically sends to the server a single acknowledgement packet that provides information about all packets that have arrived at the client by the time the acknowledgment is sent. In receiver-driven streaming, the client periodically sends to the server a single request packet that comprises a transmission schedule for sending missing data to the client over a horizon of time. We develop a comprehensive optimization framework that enables computing packet transmission decisions that maximize the end-to-end video quality for the given bandwidth resources, in both prospective scenarios. The core step of the optimization comprises computing the probability that a single packet will be communicated in error as a function of the expected transmission redundancy (or cost) used to communicate the packet. Through comprehensive simulation experiments, we carefully examine the performance advances that our framework enables relative to state-of-the-art scheduling systems that employ regular acknowledgement or request packets. Consistent gains in video quality of up to 2B are demonstrated across a variety of content types. We show that there is a direct analogy between the error-cost efficiency of streaming a single packet and the overall rate-distortion performance of streaming the whole content. In the case of sender-driven transmission, we develop an effective modeling approach that accurately characterizes the end-to-end performance as a function of the packet loss rate on the backward channel and the source encoding characteristics.