127 resultados para Iron garnet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Conventional cross-sectional imaging with computed tomography and magnetic resonance imaging (MRI) has limited accuracy for lymph node (LN) staging in bladder and prostate cancer patients. Objective To prospectively assess the diagnostic accuracy of combined ultrasmall superparamagnetic particles of iron oxide (USPIO) MRI and diffusion-weighted (DW) MRI in staging of normal-sized pelvic LNs in bladder and/or prostate cancer patients. Design, setting, and participants Examinations with 3-Tesla MRI 24–36 h after administration of USPIO using conventional MRI sequences combined with DW-MRI (USPIO-DW-MRI) were performed in 75 patients with clinically localised bladder and/or prostate cancer staged previously as N0 by conventional cross-sectional imaging. Combined USPIO-DW-MRI findings were analysed by three independent readers and correlated with histopathologic LN findings after extended pelvic LN dissection (PLND) and resection of primary tumours. Outcome measurements and statistical analysis Sensitivity and specificity for LN status of combined USPIO-DW-MRI versus histopathologic findings were evaluated per patient (primary end point) and per pelvic side (secondary end point). Time required for combined USPIO-DW-MRI reading was assessed. Results and limitations At histopathologic analysis, 2993 LNs (median: 39 LNs; range: 17–68 LNs per patient) with 54 LN metastases (1.8%) were found in 20 of 75 (27%) patients. Per-patient sensitivity and specificity for detection of LN metastases by the three readers ranged from 65% to 75% and 93% to 96%, respectively; sensitivity and specificity per pelvic side ranged from 58% to 67% and 94% to 97%, respectively. Median reading time for the combined USPIO-DW-MRI images was 9 min (range: 3–26 min). A potential limitation is the absence of a node-to-node correlation of combined USPIO-DW-MRI and histopathologic analysis. Conclusions Combined USPIO-DW-MRI improves detection of metastases in normal-sized pelvic LNs of bladder and/or prostate cancer patients in a short reading time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single Hochdorf burial was found in 1887 during construction work in the Canton of Lucerne, Switzerland. It dates from between 320 and 250 BC. The calvarium, the left half of the pelvis and the left femur were preserved. The finding shows an unusual bony alteration of the skull. The aim of this study was to obtain a differential diagnosis and to examine the skull using various methods. Sex and age were determined anthropologically. Radiological examinations were performed with plain X-ray imaging and a multislice computed tomography (CT) scanner. For histological analysis, samples of the lesion were taken. The pathological processing included staining after fixation, decalcification, and paraffin embedding. Hard-cut sections were also prepared. The individual was female. The age at death was between 30 and 50 years. There is an intensely calcified bone proliferation at the right side of the os frontalis. Plain X-ray and CT imaging showed a large sclerotic lesion in the area of the right temple with a partly bulging appearance. The inner boundary of the lesion shows multi-edged irregularities. There is a diffuse thickening of the right side. In the left skull vault, there is a mix of sclerotic areas and areas which appear to be normal with a clear differentiation between tabula interna, diploë and tabula externa. Histology showed mature organised bone tissue. Radiological and histological findings favour a benign condition. Differential diagnoses comprise osteomas which may occur, for example, in the setting of hereditary adenomatous polyposis coli related to Gardner syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Neoproterozoic was a major turning point in Earth's surficial history, recording several widespread glaciations, the first appearance of complex metazoan life, and a major increase in atmospheric oxygen. Marine redox proxies have resulted in many different estimates of both the timing and magnitude of the increase in free oxygen, although the consensus has been that it occurred following the Marinoan glaciation, the second globally recorded “snowball Earth” event. A critically understudied rock type of the Neoproterozoic is iron formation associated with the Sturtian (first) glaciation. Samples from the <716 Ma Rapitan iron formation were analysed for their Re concentrations and Mo isotopic composition to refine the redox history of its depositional basin. Rhenium concentrations and Re/Mo ratios are consistently low throughout the bottom and middle of the iron formation, reflecting ferruginous to oxic basinal conditions, but samples from the uppermost jasper layers of the iron formation show significantly higher Re concentrations and Re/Mo ratios, indicating that iron formation deposition was terminated by a shift towards a sulfidic water column. Similarly, the δ98Mo values are close to 0.0‰ throughout most of the iron formation, but rise to ~+0.7‰ near the top of the section. The δ98Mo from samples of ferruginous to oxic basinal conditions are the product of adsorption to hematite, indicating that the Neoproterozoic open ocean may have had a δ98Mo of ~1.8‰. Together with the now well-established lack of a positive Eu anomaly in Neoproterozoic iron formations, these results suggest that the ocean was predominantly oxygenated at 700 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and photophysical properties of the complex Fe(phen)(2)(TTF-dppz)(2+) (TTF-dppz = 4',5'-bis-(propylthio)tetrathiafulvenylidipyrido3,2-a:2',3'-c-phenazine, phen = 1,10-phenanthroline) are described. In this complex, excitation into the metal ligand charge transfer bands results in the population of a high-spin state of iron(II), with a decay lifetime of approximately 1.5 ns, in dichloromethane, at room temperature. An intraligand charge transfer state can also be obtained and has a lifetime of 38 ps. A mechanism for the different states reached is proposed based on transient absorption spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N′-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ∼1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.�

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, scholars have identified Early Iron Age Kinneret as belonging either to the kingdom of Geshur1 or at least as being part of an early Aramaean polity.2 It is the purpose of this paper to reexamine the archaeological evidence for such an assumption and to critically test the currently available data against this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten isotope compositions of magmatic iron meteorites yield ages of differentiation that are within ±2 Ma of the formation of CAIs, with the exception of IVB irons that plot to systematically less radiogenic compositions yielding erroneously old ages. Secondary neutron capture due to galactic cosmic ray (GCR) irradiation is known to lower the ε182W of iron meteorites, adequate correction of which requires a measure of neutron dosage which has not been available, thus far. The W, Os and Pt isotope systematics of 12 of the 13 known IVB iron meteorites were determined by MC-ICP-MS (W, Os, Pt) and TIMS (Os). On the same dissolutions that yield precise ε182W, stable Os and Pt isotopes were determined as in situ neutron dosimeters for empirical correction of the ubiquitous cosmic-ray induced burn-out of 182W in iron meteorites. The W isotope data reveal a main cluster with ε182W of ∼−3.6, but a much larger range than observed in previous studies including irons (Weaver Mountains and Warburton Range) that show essentially no cosmogenic effect on their ε182W. The IVB data exhibits resolvable negative anomalies in ε189Os (−0.6ε) and complementary ε190Os anomalies (+0.4ε) in Tlacotepec due to neutron capture on 189Os which has approximately the same neutron capture cross section as 182W, and captures neutrons to produce 190Os. The least irradiated IVB iron, Warburton Range, has ε189Os and ε190Os identical to terrestrial values. Similarly, Pt isotopes, which are presented as ε192Pt, ε194Pt and ε196Pt range from +4.4ε to +53ε, +1.54ε to −0.32ε and +0.73ε to −0.20ε, respectively, also identify Tlacotepec and Dumont as the most GCR-damaged samples. In W–Os and W–Pt isotope space, the correlated isotope data back-project toward a 0-epsilon value of ε192Pt, ε189Os and ε190Os from which a pre-GCR irradiation ε182W of −3.42±0.09 (2σ) is derived. This pre-GCR irradiation ε182W is within uncertainty of the currently accepted CAI initial ε182W. The Pt and Os isotope correlations in the IVB irons are in good agreement with a nuclear model for spherical irons undergoing GCR spallation, although this model over-predicts the change of ε182W by ∼2×, indicating a need for better W neutron capture cross section determinations. A nucleosynthetic effect in ε184W in these irons of −0.14±0.08 is confirmed, consistent with the presence of Mo and Ru isotope anomalies in IVB irons. The lack of a non-GCR Os isotope anomaly in these irons requires more complex explanations for the production of W, Ru and Mo anomalies than nebular heterogeneity in the distribution of s-process to r-process nuclides.