86 resultados para In-situ analysis
Resumo:
Actinic keratosis (AK) and Bowenoid in situ carcinoma (BISC) are two distinct forms of in situ squamous cell carcinoma in felines. They usually occur on different locations and present with specific clinical and histologic features. However, in some cases, these diseases cannot be distinguished either clinically or histopathologically. The aim of the present study was to determine the accuracy of diagnosis based on clinical or histologic criteria alone, and whether immunohistochemistry for papillomavirus or p53 can improve the accuracy of diagnosis. A series of in situ squamous cell carcinoma cases (n = 45) were selected according to their location and initial histologic classification and subsequently classified as AK (n = 22) or BISC (n = 23) according to the clinical criteria and were reevaluated histologically by 2 dermatopathologists. All BISC cases and most of the AK cases (n = 15) were confirmed histologically. In 7 cases clinically classified as AK, this diagnosis was not unanimously confirmed histologically because of the presence of overlapping features. P53 immunoreactivity was observed in 11/14 (79%) confirmed AK cases and in 4/22 (18%) BISC cases, while papillomavirus antigen was not detected in any confirmed AK case but was detected in 11/23 (48%) BISC cases. It was concluded that BISC can usually be reliably diagnosed histologically. The histologic diagnosis of lesions clinically suggestive of AK might sometimes be difficult. Results of immunohistochemistry for p53 and papillomavirus antigen were supportive for a role of sun exposure and papillomavirus in the pathogenesis of AK and BISC, respectively.
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.
Resumo:
OBJECTIVES In dental research multiple site observations within patients or taken at various time intervals are commonplace. These clustered observations are not independent; statistical analysis should be amended accordingly. This study aimed to assess whether adjustment for clustering effects during statistical analysis was undertaken in five specialty dental journals. METHODS Thirty recent consecutive issues of Orthodontics (OJ), Periodontology (PJ), Endodontology (EJ), Maxillofacial (MJ) and Paediatric Dentristry (PDJ) journals were hand searched. Articles requiring adjustment accounting for clustering effects were identified and statistical techniques used were scrutinized. RESULTS Of 559 studies considered to have inherent clustering effects, adjustment for this was made in the statistical analysis in 223 (39.1%). Studies published in the Periodontology specialty accounted for clustering effects in the statistical analysis more often than articles published in other journals (OJ vs. PJ: OR=0.21, 95% CI: 0.12, 0.37, p<0.001; MJ vs. PJ: OR=0.02, 95% CI: 0.00, 0.07, p<0.001; PDJ vs. PJ: OR=0.14, 95% CI: 0.07, 0.28, p<0.001; EJ vs. PJ: OR=0.11, 95% CI: 0.06, 0.22, p<0.001). A positive correlation was found between increasing prevalence of clustering effects in individual specialty journals and correct statistical handling of clustering (r=0.89). CONCLUSIONS The majority of studies in 5 dental specialty journals (60.9%) examined failed to account for clustering effects in statistical analysis where indicated, raising the possibility of inappropriate decreases in p-values and the risk of inappropriate inferences.
Resumo:
F. psychrophilum is the causative agent of Bacterial Cold Water Disease (BCW) and Rainbow Trout Fry Syndrome (RTFS). To date, diagnosis relies mainly on direct microscopy or cultural methods. Direct microscopy is fast but not very reliable, whereas cultural methods are reliable but time-consuming and labor-intensive. So far fluorescent in situ hybridization (FISH) has not been used in the diagnosis of flavobacteriosis but it has the potential to rapidly and specifically detect F. psychrophilum in infected tissues. Outbreaks in fish farms, caused by pathogenic strains of Flavobacterium species, are increasingly frequent and there is a need for reliable and cost-effective techniques to rapidly diagnose flavobacterioses. This study is aimed at developing a FISH that could be used for the diagnosis of F. psychrophilum infections in fish. We constructed a generic probe for the genus Flavobacterium ("Pan-Flavo") and two specific probes targeting F. psychrophilum based on 16S rRNA gene sequences. We tested their specificity and sensitivity on pure cultures of different Flavobacterium and other aquatic bacterial species. After assessing their sensitivity and specificity, we established their limit of detection and tested the probes on infected fresh tissues (spleen and skin) and on paraffin-embedded tissues. The results showed high sensitivity and specificity of the probes (100% and 91% for the Pan-Flavo probe and 100% and 97% for the F. psychrophilum probe, respectively). FISH was able to detect F. psychrophilum in infected fish tissues, thus the findings from this study indicate this technique is suitable as a fast and reliable method for the detection of Flavobacterium spp. and F. psychrophilum.
Resumo:
Tin is a notable anti-erosive agent, and the biopolymer chitosan has also shown demineralisation-inhibiting properties. Therefore, the anti-erosive/anti-abrasive efficacy of the combination of both compounds was tested under in situ conditions. Twenty-seven volunteers were included in a randomised, double-blind, three-cell crossover in situ trial. Enamel specimens were recessed on the buccal aspects of mandibular appliances, extraorally demineralised (6 × 2 min/day) and intraorally treated with toothpaste slurries (2 × 2 min/day). Within the slurry treatment time, one-half of the specimens received additional intraoral brushing (5 s, 2.5 N). The tested toothpastes included a placebo toothpaste, an experimental NaF toothpaste (1,400 ppm F(-)) and an experimental F/Sn/chitosan toothpaste (1,400 ppm F(-), 3,500 ppm Sn(2+), 0.5% chitosan). The percentage reduction of tissue loss (slurry exposure/slurry exposure + brushing) compared to placebo was 19.0 ± 47.3/21.3 ± 22.4 after use of NaF and 52.5 ± 30.9/50.2 ± 34.3 after use of F/Sn/chitosan. F/Sn/chitosan was significantly more effective than NaF (p ≤ 0.001) and showed good efficacy against erosive and erosive-abrasive tissue loss. This study suggests that the F/Sn/chitosan toothpaste could provide good protection for patients who frequently consume acidic foodstuffs.