91 resultados para Immunofluorescene localization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissue. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of a Special Issue entitled 'Fluorescent Neuro-Ligands'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

valois (vls) was identified as a posterior group gene in the initial screens for Drosophila maternal-effect lethal mutations. Despite its early genetic identification, it has not been characterized at the molecular level until now. We show that vls encodes a divergent WD domain protein and that the three available EMS-induced point mutations cause premature stop codons in the vls ORF. We have generated a null allele that has a stronger phenotype than the EMS mutants. The vlsnull mutant shows that vls+ is required for high levels of Oskar protein to accumulate during oogenesis, for normal posterior localization of Oskar in later stages of oogenesis and for posterior localization of the Vasa protein during the entire process of pole plasm assembly. There is no evidence for vls being dependent on an upstream factor of the posterior pathway, suggesting that Valois protein (Vls) instead acts as a co-factor in the process. Based on the structure of Vls, the function of similar proteins in different systems and our phenotypic analysis, it seems likely that vls may promote posterior patterning by facilitating interactions between different molecules.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED (111)In-DOTA-exendin-4 SPECT/CT has been shown to be highly efficient in the detection of insulinomas. We aimed at determining whether novel PET/CT imaging with [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]exendin-4 ((68)Ga-DOTA-exendin-4) is feasible and sensitive in detecting benign insulinomas. METHODS (68)Ga-DOTA-exendin-4 PET/CT and (111)In-DOTA-exendin-4 SPECT/CT were performed in a randomized cross-over order on 5 patients with endogenous hyperinsulinemic hypoglycemia. The gold standard for comparison was the histologic diagnosis after surgery. RESULTS In 4 patients histologic diagnosis confirmed a benign insulinoma, whereas one patient refused surgery despite a positive (68)Ga-DOTA-exendin-4 PET/CT scan. In 4 of 5 patients, previously performed conventional imaging (CT or MR imaging) was not able to localize the insulinoma. (68)Ga-DOTA-exendin-4 PET/CT correctly identified the insulinoma in 4 of 4 patients, whereas (111)In-DOTA-exendin-4 SPECT/CT correctly identified the insulinoma in only 2 of 4 patients. CONCLUSION These preliminary data suggest that the use of (68)Ga-DOTA-exendin-4 PET/CT in detecting hidden insulinomas is feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many location-based services target users in indoor environments. Similar to the case of dense urban areas where many obstacles exist, indoor localization techniques suffer from outlying measurements caused by severe multipath propaga??tion and non-line-of-sight (NLOS) reception. Obstructions in the signal path caused by static or mobile objects downgrade localization accuracy. We use robust multipath mitigation techniques to detect and filter out outlying measurements in indoor environments. We validate our approach using a power-based lo??calization system with GSM. We conducted experiments without any prior knowledge of the tracked device's radio settings or the indoor radio environment. We obtained localization errors in the range of 3m even if the sensors had NLOS links to the target device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole−dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent−solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent−solute interactions to describe the dynamical changes of the solute excited states during the solvent response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.