117 resultados para Human-lung Fibroblasts
Resumo:
The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.
Resumo:
INTRODUCTION: This case report describes the anaesthetic management of exploratory thoracoscopy and alternating one lung ventilation (OLV) in a dog with a pulmonary bulla, and the application of continuous positive airway pressure (CPAP) to the non-ventilated lung for preventing and treating hypoxia. CASE HISTORY: A 6-year-old, male castrated Border collie was scheduled for exploratory thoracoscopy to investigate spontaneous pnemothorax that had not resolved with repeated suction. Specific requirements for the thoracoscopy were alternating OLV to allow the surgical access to the right middle lobe and its removal, and the examination of the left hemithorax to rule out the presence of other lesions. DIAGNOSIS AND MANAGEMENT: Selective lung ventilation was performed with a double lumen endobronchial tube (DLT), inserted under endoscopic guidance. After a short period of two lung ventilation during preparation of the surgical field, alternating OLV was performed, combining CPAP, provided to the non-ventilated lung via a Mapleson D breathing system, and positive end-expiratory pressure (PEEP) applied to the ventilated lung. Left OLV occurred first and resection of the right middle pulmonary lobe was successfully performed; right OLV followed to allow the examination of the left hemithorax. DISCUSSION AND CONCLUSIONS: The combination of CPAP and PEEP resulted in a satisfactory intra-operative management of hypoxemia. Alternating OLV can be performed successfully by using a DLT. CPAP, commonly employed in human medicine, should be considered an important tool in the anaesthetic management of OLV in small animals.
Resumo:
The objective of our study was to compare the effect of dual-energy subtraction and bone suppression software alone and in combination with computer-aided detection (CAD) on the performance of human observers in lung nodule detection.
Resumo:
PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.
Resumo:
Inhaled particles may cause increased pulmonary and cardiovascular morbidity and mortality. The wall structures of airways and alveoli act as a series of structural and functional barriers against inhaled particles. Deposited particles are displaced and come into close association with epithelial cells, macrophages and dendritic cells. The cellular interplay after particle deposition in a triple cell co-culture model of the human airway wall was investigated by laser scanning microscopy. Furthermore, the cellular response was determined by measurement of TNF-alpha. Dendritic cells gained access to the apical side of the epithelium where they sampled particles and interacted with macrophages.
Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis
Resumo:
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.
In vivo electroporation and ubiquitin promoter--a protocol for sustained gene expression in the lung
Resumo:
BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.
Resumo:
CRF has powerful receptor-mediated cardiovascular actions. To evaluate the precise distribution of CRF receptors, in vitro CRF receptor autoradiography with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine or [(125)I]-antisauvagine-30 was performed in the rodent and human cardiovascular system. An extremely high density of CRF(2) receptors was detected with both tracers in vessels of rodent lung, intestine, pancreas, mesenterium, kidney, urinary bladder, testis, heart, brain, and in heart muscle. In humans, CRF(2) receptors were detected with (125)I- antisauvagine-30 at low levels in vessels of kidneys, intestine, urinary bladder, testis, heart and in heart muscle, while only heart vessels were detected with (125)I-[Tyr(0), Glu(1), Nle(17)]-sauvagine. This is the first extensive morphological study reporting the extremely wide distribution of CRF(2) receptors in the rodent cardiovascular system and a more limited expression in man, suggesting a species-selective CRF receptor expression.
Resumo:
Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.
Resumo:
Pulmonary surfactant prevents alveolar collapse via reduction of surface tension. In contrast to human neonates, rats are born with saccular lungs. Therefore, rat lungs serve as a model for investigation of the surfactant system during postnatal alveolar formation. We hypothesized that this process is associated with characteristic structural and biochemical surfactant alterations. We aimed to discriminate changes related to alveolarization from those being either invariable or follow continuous patterns of postnatal changes. Secreted active (mainly tubular myelin (tm)) and inactive (unilamellar vesicles (ulv)) surfactant subtypes as well as intracellular surfactant (lamellar bodies (lb)) in type II pneumocytes (PNII) were quantified before (day (d) 1), during (d 7), at the end of alveolarization (d 14), and after completion of lung maturation (d 42) using electron microscopic methods supplemented by biochemical analyses (phospholipid quantification, immunoblotting for SP-A). Immunoelectron microscopy determined the localization of surfactant protein A (SP-A). (1) At d 1 secreted surfactant was increased relative to d 7-42 and then decreased significantly. (2) Air spaces of neonatal lungs comprised lower fractions of tm and increased ulv, which correlated with low SP-A concentrations in lung lavage fluid (LLF) and increased respiratory rates, respectively. (3) Alveolarization (d 7-14) was associated with decreasing PNII size although volume and sizes of Lb continuously increased. (4) The volume fractions of Lb correlated well with the pool sizes of phospholipids in lavaged lungs. Our study emphasizes differential patterns of developmental changes of the surfactant system relative to postnatal alveolarization.
Resumo:
BACKGROUND: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. METHODS: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. MAIN RESULTS: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. CONCLUSION: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.
Resumo:
BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.
Resumo:
OBJECTIVE: The purpose of this study was to adapt and improve a minimally invasive two-step postmortem angiographic technique for use on human cadavers. Detailed mapping of the entire vascular system is almost impossible with conventional autopsy tools. The technique described should be valuable in the diagnosis of vascular abnormalities. MATERIALS AND METHODS: Postmortem perfusion with an oily liquid is established with a circulation machine. An oily contrast agent is introduced as a bolus injection, and radiographic imaging is performed. In this pilot study, the upper or lower extremities of four human cadavers were perfused. In two cases, the vascular system of a lower extremity was visualized with anterograde perfusion of the arteries. In the other two cases, in which the suspected cause of death was drug intoxication, the veins of an upper extremity were visualized with retrograde perfusion of the venous system. RESULTS: In each case, the vascular system was visualized up to the level of the small supplying and draining vessels. In three of the four cases, vascular abnormalities were found. In one instance, a venous injection mark engendered by the self-administration of drugs was rendered visible by exudation of the contrast agent. In the other two cases, occlusion of the arteries and veins was apparent. CONCLUSION: The method described is readily applicable to human cadavers. After establishment of postmortem perfusion with paraffin oil and injection of the oily contrast agent, the vascular system can be investigated in detail and vascular abnormalities rendered visible.
Resumo:
Three closely related human sec14p-like proteins (hTAP1, 2, and 3, or SEC14L2, 3, and 4, respectively) have been described. These proteins may participate in intracellular lipid transport (phospholipids, squalene, tocopherol analogues and derivatives) or influence regulatory lipid-dependent events. Here, we show that the three recombinant hTAP proteins associate with the Golgi apparatus and mitochondria, and enhance the in vitro transport of radioactively labeled alpha-tocopherol to mitochondria in the same order of magnitude as the human alpha-tocopherol transfer protein (alpha-TTP). hTAP1 and hTAP2 are expressed in several cell lines, whereas the expression level of hTAP3 is low. Expression of hTAP1 is induced in human umbilical cord blood-derived mast cells upon differentiation by interleukin 4. In tissues, the three hTAPs are detectable ubiquitously at low level; pronounced and localized expression is found for hTAP2 and hTAP3 in the perinuclear region in cerebellum, lung, liver and adrenal gland. hTAP3 is well expressed in the epithelial duct cells of several glands, in ovary in endothelial cells of small arteries as well as in granulosa and thecal cells, and in testis in Leydig cells. Thus, the three hTAPs may mediate lipid uptake, secretion, presentation, and sub-cellular localization in a tissue-specific manner, possibly using organelle- and enzyme-specific docking sites.