99 resultados para High pressure system
Resumo:
OBJECTIVE: Conventional harvesting of saphenous vein used for coronary artery bypass surgery induces a vasospasm that is overcome by high-pressure distension. Saphenous vein harvested with its cushion of perivascular tissue by a "no touch" technique does not undergo vasospasm and distension is not required, leading to an improved graft patency. The aim of this study is to investigate the effect of surgical damage and high-pressure distension on endothelial integrity and endothelial nitric oxide synthase expression and activity in saphenous vein harvested with and without perivascular tissue. METHODS: Saphenous veins from patients (n = 26) undergoing coronary artery bypass surgery were prepared with and without perivascular tissue. We analyzed the effect of 300 mm Hg distension on morphology and endothelial nitric oxide synthase/nitric oxide synthase activity using a combination of immunohistochemistry, Western blot analysis, reverse transcriptase polymerase chain reaction, and enzyme assay in distended (with and without perivascular tissue) compared with nondistended (with and without perivascular tissue) segments. RESULTS: Distension induced substantial damage to the luminal endothelium (assessed by CD31 staining) and vessel wall. Endothelial nitric oxide synthase expression and activity were significantly reduced by high-pressure distension and removal of, or damage to, perivascular tissue. The effect of distension was significantly less for those with perivascular tissue than for those without perivascular tissue in most cases. CONCLUSION: The success of the saphenous vein used as a bypass graft is affected by surgical trauma and distension. Veins removed with minimal damage exhibit increased patency rates. We show that retention of perivascular tissue on saphenous vein prepared for coronary artery bypass surgery by the "no touch" technique protects against distension-induced damage, preserves vessel morphology, and maintains endothelial nitric oxide synthase/nitric oxide synthase activity.
Resumo:
OBJECTIVE: To describe the urological and nephrological long-term outcome of patients born with classical bladder exstrophy treated with bilateral ureterosigmoidostomies in early childhood. PATIENTS AND METHOD: Out of 42 patients born with bladder exstrophy in Switzerland between 1937 and 1968, 25 participated in this study; seven had died, seven were lost to follow up and three refused consent. Assessment included chart review, clinical examination, and assessment of renal function and morphology. RESULTS: After a follow-up period of 37-69 years ((mean 50 years), 13 of the 25 participants (52%) had their ureterosigmoidostomy still in place. All others had different forms of urinary diversions. Fifteen (60%) patients had normal renal function or mild chronic kidney disease as assessed by estimated glomerular filtration rate. Three patients were on renal replacement therapy. MRI (n=16) showed 10 morphologically normal kidneys. One patient suffered from adenocarcinoma of the colon, five had benign colonic polyps, one urethral papillary carcinoma and 18 no evidence of tumor. CONCLUSION: The majority of our patients have normal or mildly impaired renal function and a well functioning ureterosigmoidostomy. This is remarkable, given the fact that ureterosigmoidostomies are considered to be refluxing high-pressure reservoirs at risk of renal injury and malignancy.
Resumo:
Muscovite B4M, distributed in 1961 as an age standard, was ground under ethanol. Five grain size fractions were obtained and characterized by X-ray diffraction. They display a mixing trend between a phengitic (enriched in the fraction <0.2 µm) and a muscovitic component (predominant in the fraction >20 µm). High-pressure phengite is preserved as a relict in retrograde muscovite. Electron microprobe analyses of the distributed mineral separate reveal at least four white mica populations based on Si, Al, Mg, Na, Fe and F. Rb/K ratios vary by one order of magnitude. Rb–Sr analyses link the mineralogical heterogeneity to variable Rb/Sr and 87Sr/86Sr ratios. The grain size fractions define no internal isochron. Relict fine-grained phengite gives older ages than coarse-grained retrograde greenschist facies muscovite. The inverse grain size–age relationship also characterizes 39Ar/40Ar analyses. Cl/K anticorrelates with step ages: Cl-rich coarse muscovite is younger than Cl-poor fine relict phengite. Sr and Ar preserve a similar isotopic inheritance despite peak metamorphism reaching 635±20 °C. A suitable mineral standard requires that its petrological equilibrium first be demonstrated. Relicts and retrograde reaction textures are a guarantee of isotopic disequilibrium and heterogeneous ages within single crystal at the micrometre scale.
Resumo:
In February 1962, Hamburg experienced its most catastrophic storm surge event of the 20th century. This paper analyses the event using the Twentieth Century Reanalysis (20CR) dataset. Responsible for the major flood was a strong low pressure system centred over Scandinavia that was associated with strong north-westerly winds towards the German North Sea coast – the ideal storm surge situation for the Elbe estuary. A comparison of the 20CR dataset with observational data proves the applicability of the reanalysis data for this extreme event.
Resumo:
In 1947, Switzerland was affected by a heat period of large spatial and temporal extent and rare occurrence. The heatwaves of 1947 can be compared with the events of 2003 in terms of intensity and duration. The summer of 1947 is studied based on the analysis of MeteoSwiss station data as well as the “Twentieth Century Reanalysis” (20CR) data set. Heatwaves were defined as six consecutive exceedances of the local 90th percentile of temperature. Five different heatwaves were identified which struck Switzerland during the summer of 1947. The most intense heatwave event is analysed in more detail. The meteorological situation was characterized by a high-pressure bridge over Central Europe. Based on a comparison with literature and with observations, the applicability of the 20CR dataset for the meteorological analysis of heatwave events could be demonstrated. The representation of the heat period in summer 1947 in 20CR is satisfactory when compared with station data, albeit with a temperature bias due to differences in topography. Hence, heatwaves cannot be defined using an absolute threshold. We conclude that 20CR is applicable for an overview of the meteorological patterns characterizing a heat wave but may not reproduce local details.
Resumo:
Anatolia is situated in the Eastern Mediterranean region between 36 – 42N and 26 – 45E. The geological records of paleoglaciations in the high terrains of Anatolia are key archives to quantify paleoclimate change in the Eastern Mediterranean area. The climate of the Eastern Mediterranean region is influenced by three main atmospheric systems: the main middle to high latitude westerlies, the mid-latitude subtropical high-pressure systems, and the monsoon climate. Glacial geological studies in Turkey have started in the late 19th century. Glacial deposits are found mainly in the eastern, northeastern and southern part of the Anatolian Peninsula. Anatolia is the fundamental element to understand the interactions between paleoenvironment, climatic variations, and development of the human societies. As the Taurus and Black Sea Mountains are sensitively situated for the paleoclimatic reconstructions, a chronostratigraphic framework on the paleoglaciation should be elaborated. The timing of the Last Glacial Maximum (LGM) in Anatolia is still unknown. Our first results from Kavron Valley (Kaçkar Mountains, NE Turkey) are encouraging for the reconstruction of paleoglaciations in Turkey and related paleoclimatological interpretations although it is presently difficult to pinpoint the classical Last Glacial Maximum – Younger Dryas – Little Ice Age moraine sequences in the field.
Resumo:
When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.
Resumo:
Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Briançonnais terrane and the Piemonte-Liguria Ocean, in an endeavour to constrain the high-pressure (HP) metamorphism and the retrogression history. 12 samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by 2 samples from the Monte Rosa 100 km to the NE and also attributed to the Briançonnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from ca. 300 Ma in the westernmost samples (Zone Houillère), reaching ca. 300 °C during Alpine metamorphism, to < 48 Ma in the internal units to the East, which reached ca. 500 °C during Alpine orogeny. The conventional “thermochronological” interpretation postulates Cretaceous Eo-Alpine HP metamorphism and younger “cooling ages” in the higher-temperature samples. However, Eocene Lu-Hf and Sm-Nd ages from the same samples cannot be interpreted as post-metamorphic cooling ages, which makes a Cretaceous eclogitization untenable. The age date from this transect require instead to replace conventional “thermochronology” by an approach combining age dating with detailed geochemical, petrological and microstructural investigations. Petrology reveals important mineralogical differences along the transect. Samples from the Zone Houillère mostly contain detrital mica. White mica with Si > 6.45 atoms per formula unit becomes more abundant eastward. Across the whole traverse, HP phengitic mica forms the D1 foliation. Syn-D2 mica is Si-poorer and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist facies conditions. D1 phengite is very often corroded, overgrown or intergrown by syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; microchemical fingerprinting shows that it also can form pseudomorphs after crystals that could be mistaken to have formed during D1 based on microstructural arguments alone. Thereby the Cl concentration in white mica is a useful discriminator, since D2 retrogression was associated with a less saline fluid than eclogitization. Once the petrological stage is set, geochronology is straightforward. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local pressure-temperature-fluid activity-deformation conditions. The correlation of age vs. Cl/K clearly identifies 47 ± 1 Ma as the age of formation of syn-D1 mica along the entire transect, including the Monte Rosa nappe samples. The inferred age of the greenschist-facies low-Si syn-D2 mica generation ranges within 39-43 Ma, with local variations. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, are strong evidence that the D1 white mica ages are very close to formation ages. Volume diffusion of Ar in white mica (activation energy E = 250 kJ/mol; pressure-adjusted diffusion coefficient D’0 < 0.03 cm2 s-1) has a subordinate effect on mineral ages compared to both prograde and retrograde recrystallization in most samples. Eocene Lu-Hf and Sm-Nd garnet ages are prograde and predate the HP peak.
Resumo:
Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. Microsc. Res. Tech. 77:754-772, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.
Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use
Resumo:
Adolescent development includes changes in the biological regulatory processes for the timing of sleep. Circadian rhythm changes and changes to the sleep-pressure system (sleep homeostasis) during adolescence both favor later timing of sleep. These changes, combined with prevailing social pressures, are responsible for most teens sleeping too late and too little; those who sleep least report consuming more caffeine. Although direct research findings are scarce, the likelihood of use and abuse of caffeine-laden products grows across the adolescent years due, in part, to excessive sleepiness
Resumo:
A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.
Resumo:
PURPOSE To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. BASIC METHODS Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. PRINCIPAL FINDINGS Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03-5.46 Pa vs. eversion carotid endarterectomy: 0.12-5.22 Pa). CONCLUSIONS Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.
Resumo:
Objectives: It has been repeatedly demonstrated that athletes in a state of ego depletion do not perform up to their capabilities in high pressure situations. We assume that momentarily available self-control strength determines whether individuals in high pressure situations can resist distracting stimuli. Design/method: In the present study, we applied a between-subjects design, as 31 experienced basketball players were randomly assigned to a depletion group or a non-depletion group. Participants performed 30 free throws while listening to statements representing worrisome thoughts (as frequently experienced in high pressure situations) over stereo headphones. Participants were instructed to block out these distracting audio messages and focus on the free throws. We postulated that depleted participants would be more likely to be distracted. They were also assumed to perform worse in the free throw task. Results: The results supported our assumption as depleted participants paid more attention to the distracting stimuli. In addition, they displayed worse performance in the free throw task. Conclusions: These results indicate that sufficient levels of self-control strength can serve as a buffer against distracting stimuli under pressure.
Resumo:
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.