154 resultados para Hetero-coagulation
Resumo:
BACKGROUND: Elevated plasma levels of interleukin (IL)-6, C-reactive protein (CRP), and D-dimer belong to the biological alterations of the "frailty syndrome," defining increased vulnerability for diseases and mortality with aging. We hypothesized that, compatible with premature frailty, chronic stress and age are related in predicting inflammation and coagulation activity in Alzheimer caregivers. METHODS: Plasma IL-6, CRP, and D-dimer levels were measured in 170 individuals (mean age 73 +/- 9 years; 116 caregivers, 54 noncaregiving controls). Demographic factors, diseases, drugs, and lifestyle variables potentially affecting inflammation and coagulation were obtained by history and adjusted for as covariates in statistical analyses. RESULTS: Caregivers had higher mean levels of IL-6 (1.38 +/- 1.42 vs 1.00 +/- 0.92 pg/mL, p =.032) and of D-dimer (723 +/- 530 vs 471 +/- 211 ng/mL, p <.001) than controls had. CRP levels were similar between groups (p =.44). The relationship between caregiver status and D-dimer was independent of covariates (p =.037) but affected by role overload. Age accounted for much of the relationship with IL-6. After controlling for covariates, the interaction between caregiver status and age was significant for D-dimer (beta =.20, p =.029) and of borderline significance for IL-6 (beta =.17, p =.090). Post hoc regression analyses indicated that, among caregivers, age was significantly correlated with both D-dimer (beta =.50, p <.001) and IL-6 (beta =.38, p =.001). Among controls, however, no significant relationship was observed between age and either D-dimer or IL-6. CONCLUSIONS: The interaction between caregiving status and age for D-dimer and IL-6 suggests the possibility that older caregivers could be at risk of a more rapid transition to the frailty syndrome and clinical manifestations of cardiovascular diseases.
Resumo:
OBJECTIVES: To determine whether objective measures of sleep correlate with plasma levels of the proinflammatory cytokine interleukin (IL)-6 and the procoagulant marker fibrin D-dimer in caregivers of patients with dementia. DESIGN: Cross-sectional study. SETTING: Subjects' homes. PARTICIPANTS: Sixty-four community-dwelling spousal caregivers (69% women, mean age+/-standard deviation 72+/-9) and 36 sex-matched noncaregiving controls. MEASUREMENTS: All participants underwent in-home full-night polysomnography. Demographic and lifestyle factors, depression, diseases, and medication that could affect inflammation, coagulation, and sleep were controlled for in analyses regressing sleep variables and caregiver status and their interaction on plasma levels of IL-6 and D-dimer. RESULTS: Caregivers had higher levels of D-dimer (781+/-591 vs 463+/-214 ng/mL, P=.001) and IL-6 (1.42+/-1.52 vs 0.99+/-0.86 pg/mL, P<.06) and lower levels of total sleep time (369+/-70 vs 393+/-51 minutes, P=.049) and sleep efficiency (77+/-11 vs 82+/-9%, P=.04) than controls. After controlling for age and body mass index, longer wake time after sleep onset (change in coefficient of determination (DeltaR2)=0.039, P=.04) and the interaction between caregiver status and higher apnea-hypopnea index (DeltaR2=0.054, P=.01) were predictors of IL-6. Controlling for age, caregiver status independently predicted D-dimer levels (DeltaR2=0.047, P=.01). Controlling for age and caregiver status, lower sleep efficiency (DeltaR2=0.032, P=.03) and the interaction between caregiver status and more Stage 2 sleep (DeltaR2=0.037, P=.02) independently predicted plasma D-dimer levels. CONCLUSION: Poor sleep was associated with higher plasma IL-6 and D-dimer levels. These effects were most pronounced in caregivers of subjects with Alzheimer's disease. The findings suggest a mechanism that may explain how disturbed sleep might be associated downstream with cardiovascular risk, particularly in older people under chronic stress.
Resumo:
BACKGROUND: Plasminogen activator inhibitor type-1 (PAI-1) is considered to be the main inhibitor of fibrinolysis in sepsis. However, the contribution of TAFI to the inhibition of fibrinolysis in sepsis is currently unknown. METHODS: TAFI antigen and PAI-1 levels were measured in severe sepsis (n = 32) and septic shock (n = 8) patients. In addition, TAFI antigen levels had been determined in 151 controls. RESULTS: Septic patients had significantly (p < 0.0001) decreased TAFI levels (median: 78.9% [range: 32.4-172.6]) as compared to controls (108.1% [35.9-255.4]). TAFI levels were equal in septic shock and severe sepsis (68.9% [32.4-172.6] vs. 82.5% [32.7-144.9], p = 0.987) as well as in survivors and non-survivors (87.1% [32.7-172.6] vs. 65.8% [32.4-129.5], p = 0.166). PAI-1 levels were significantly (705.5 ng/ml [131-5788]) higher in septic shock as in severe sepsis patients (316.5 ng/ml [53-1311], p = 0.016) and were equal in survivors and non-survivors (342 ng/ml [53-1311] vs. 413 ng/ml [55-5788], p = 0.231). TAT/PAP ratio (R((TAT/PAP))) reflecting the dysbalance between coagulation and fibrinolysis was calculated. R((TAT/PAP)) significantly increased with fatality and was significantly dependent on PAI-1, but not on TAFI. PAI-1 levels (570.5 ng/ml [135-5788]) and R((TAT/PAP)) (1.6 [0.3-6.1]) were significantly (p = 0.008 and p = 0.047) higher in patients with overt DIC as compared to patients without overt DIC (310 ng/ml [53-1128] and 0.6 [0.1-4.3]), whereas no difference was found for TAFI levels (68.9% [32.7-133.2] vs. 86.4% [32.4-172.6], p = 0.325). CONCLUSIONS: Although inhibition in sepsis is mediated by both, PAI-1 might be involved early in the sepsis process, whereas TAFI might be responsible for ongoing fibrinolysis inhibition in later stages of sepsis.
Resumo:
OBJECTIVE: Acute mental stress elicits blood hypercoagulability. Following a transactional stress model, we investigated whether individuals who anticipate stress as more threatening, challenging, and as exceeding their coping skills show greater stress reactivity of the coagulation activation marker D-dimer, indicating fibrin generation in plasma. METHODS: Forty-seven men (mean age 44 +/- 14 years; mean blood pressure [MBP] 101 +/- 12 mm Hg; mean body mass index [BMI] 26 +/- 3 kg/m(2)) completed the Primary Appraisal Secondary Appraisal (PASA) scale before undergoing the Trier Social Stress Test (combination of mock job interview and mental arithmetic task). Heart rate, blood pressure, plasma catecholamines, and D-dimer levels were measured before and after stress, and during recovery up to 60 minutes poststress. RESULTS: Hemodynamic measures, catecholamines, and D-dimer changed across all time points (p values <.001). The PASA "Stress Index" (integrated measure of transactional stress perception) correlated with total D-dimer area under the curve (AUC) between rest and 60 minutes poststress (r = 0.30, p = .050) and with D-dimer change from rest to immediately poststress (r = 0.29, p = .046). Primary appraisal (combined "threat" and "challenge") correlated with total D-dimer AUC (r = 0.37, p = .017), D-dimer stress change (r = 0.41, p = .004), and D-dimer recovery (r = 0.32, p = .042). "Challenge" correlated more strongly with D-dimer stress change than "threat" (p = .020). Primary appraisal (DeltaR(2) = 0.098, beta = 0.37, p = .019), and particularly its subscale "challenge" (DeltaR(2) = 0.138, beta = 0.40, p = .005), predicted D-dimer stress change independently of age, BP, BMI, and catecholamine change. CONCLUSIONS: Anticipatory cognitive appraisal determined the extent of coagulation activation to and recovery from stress in men. Particularly individuals who anticipated the stressor as more challenging and also more threatening had a greater fibrin stress response.
Resumo:
Polymorphisms in coagulation factors leading to altered susceptibility to cardiovascular diseases have been known for some time and some are now well-established risk factors. More recently, an increasing number of polymorphisms have been identified in platelet receptors and a series of studies indicate that these too may play a role as individual risk factors for stroke and myocardial infarction. The effect of these platelet polymorphisms appears less clear-cut than some of the coagulation factor effects and other, associated, risk factors may be important in defining their role. In this review platelet receptor polymorphisms and their role as risk factors are surveyed and their possible relevance discussed.
Resumo:
The role of the platelet glycoprotein (GP) Ib-V-IX receptor in thrombin activation of platelets has remained controversial although good evidence suggests that blocking this receptor affects platelet responses to this agonist. The mechanism of expression of procoagulant activity in response to platelet agonists is also still obscure. Here, the binding site for thrombin on GPIb is shown to have a key role in the exposure of negatively charged phospholipids on the platelet surface and thrombin generation, in response to thrombin, which also requires protease-activated receptor-1, GPIIb-IIIa, and platelet-platelet contact. Von Willebrand factor binding to GPIb is not essential to initiate development of platelet procoagulant activity. Inhibition of fibrinogen binding to GPIIb-IIIa also failed to block platelet procoagulant activity. Both heparin and low molecular weight heparin block thrombin-induced platelet procoagulant activity, which may account for part of their clinical efficacy. This study demonstrates a new, critical role for platelet GPIb in hemostasis, showing that platelet activation and coagulation are tightly interwoven, which may have implications for alternative therapies for thrombotic diseases.
Resumo:
Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.
Resumo:
Snake venoms are complex mixtures of biologically active proteins and peptides. Many of them affect hemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Based on sequence, these snake venom components have been classified into various families, such as serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. For almost every factor involved in coagulation or fibrinolysis there is a venom protein that can activate or inactivate it. Venom proteins affect platelet function by binding or degrading vWF or platelet receptors, activating protease-activated receptors or modulating ADP release and thromboxane A2 formation. Some venom enzymes cleave key basement membrane components and directly affect capillary blood vessels to cause hemorrhaging. L-Amino acid oxidases activate platelets via H2O2 production.
Resumo:
Snake venoms contain components that affect the prey either by neurotoxic or haemorrhagic effects. The latter category affect haemostasis either by inhibiting or activating platelets or coagulation factors. They fall into several types based upon structure and mode of action. A major class is the snake C-type lectins or C-type lectin-like family which shows a typical folding like that in classic C-type lectins such as the selectins and mannose-binding proteins. Those in snake venoms are mostly based on a heterodimeric structure with two subunits alpha and beta, which are often oligomerized to form larger molecules. Simple heterodimeric members of this family have been shown to inhibit platelet functions by binding to GPIb but others activate platelets via the same receptor. Some that act via GPIb do so by inducing von Willebrand factor to bind to it. Another series of snake C-type lectins activate platelets by binding to GPVI while yet another series uses the integrin alpha(2)beta(1) to affect platelet function. The structure of more and more of these C-type lectins have now been, and are being, determined, often together with their ligands, casting light on binding sites and mechanisms. In addition, it is relatively easy to model the structure of the C-type lectins if the primary structure is known. These studies have shown that these proteins are quite a complex group, often with more than one platelet receptor as ligand and although superficially some appear to act as inhibitors, in fact most function by inducing thrombocytopenia by various routes. The relationship between structure and function in this group of venom proteins will be discussed.
Resumo:
OBJECTIVE: In sepsis, activation of coagulation and inhibition of fibrinolysis lead to microvascular thrombosis. Thus, clot stability might be a critical issue in the development of multiple organ dysfunction syndrome. Activated FXIII (FXIIIa) forms stable fibrin clots by covalently cross-linking fibrin monomers. Therefore, we investigated the impact of FXIII antigen and activity levels on disease severity and fatality in sepsis patients. PATIENTS AND METHODS: FXIII subunit A (FXIIIA) and FXIII cross-linking activity (FXIIICA) were measured in 151 controls, in 32 patients with severe sepsis and 8 with septic shock. In addition, FXIII subunit B (FXIIIB) was measured in the sepsis patients. Moreover, clotting parameters were determined. RESULTS: Patients suffering from sepsis (n=40) had significantly (p<0.005) lower FXIIIA levels (median [range]: 36.5% [8.8-127.4%]) and FXIIICA levels (76.5% [9.4-266%]) as compared to healthy controls (n=151, 119% [31.3-283.2] and 122.4% [40.6-485.3], respectively). No difference in FXIIIA, FXIIIB and FXIIICA levels between survivors and non-survivors, nor between patients with severe sepsis and septic shock was found. The specific activity of FXIII (FXIIICA/FXIIIA, SA(FXIII)) was significantly (p<0.001) higher in sepsis patients (2.0 [0.8-5.3]) as compared to healthy controls (1.0 [0.4-5.1]). SA(FXIII) significantly (p<0.05) increased with fatality (non-survivors [n=13] vs. survivors [n=27]: 3.3 [1.2-5.0] vs. 1.9 [0.8-5.3]) and disease severity (septic shock vs. severe sepsis: 3.4 [1.8-4.3] vs. 1.9 [0.8-5.3]). CONCLUSION: We show decreased FXIIICA and FXIIIA levels, but higher SA(FXIII) in sepsis as compared to controls. Increased SA(FXIII) correlates with disease severity and fatality in sepsis patients.
Resumo:
Adverse cardiovascular events are the consequence of a molecular chain reaction at the site of vulnerable plaques. Key players are platelets and coagulation factors that are activated following plaque rupture and often cause arterial obstruction. Thrombin, a plasma serine protease, plays a role in hemostasis of coagulation as well as in thrombosis and cell growth, leading to restenosis and atherosclerosis. Interesting and promising new molecules, the direct thrombin inhibitors, have been shown to be as effective as the combination of glycoprotein IIb-IIIa inhibitors and heparin for the prevention of arterial thrombosis. Until recently, direct thrombin inhibitors could be applied only parenterally; therefore, therapy was limited to hospitalized patients. As a result of recent drug development, orally active direct thrombin inhibitors are now available and have been evaluated for the long-term treatment of venous thrombosis and arterial fibrillation. Due to their specific pharmacodynamic characteristics by binding directly to thrombin--and thus inhibiting platelet aggregation and fibrin generation--these novel drugs may also have therapeutic potential for the treatment of atherothrombotic disease and its complications such as myocardial infarction, stroke or limb ischemia.
Resumo:
The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction. Growth factor proteins are quantitatively incorporated and released upon cell-derived proteolytic degradation of the gels. Primary stromal cells can invade and proteolytically remodel these networks both in an in vitro and in vivo setting. The synthetic ease and potential to engineer their physicochemical and bioactive characteristics makes these hybrid networks true alternatives for fibrin as provisional drug delivery platforms in tissue engineering.
Resumo:
Inherited factor XIII (FXIII) deficiency is known as one of the most rare blood coagulation disorder in humans. In the present study, phenotype and genotype of eight FXIII deficient Polish patients from five unrelated families were compared. The patients presented with a severe phenotype demonstrated by a high incidence of intracerebral haemorrhages (seven of eight patients), haemarthrosis (six patients) and bleeding due to trauma (five patients). Introduction of regular substitution with FXIII concentrate prevented spontaneous bleeding in seven patients. In all patients, mutations within the F13A gene have been identified revealing four missense mutations (Arg77Cys, Arg260Cys, Ala378Pro, Gly420Ser), one nonsense mutation (Arg661X), one splice site mutation (IVS5-1 G>A) and one small deletion (c.499-512del). One homozygous large deletion involving exon 15 was detected by failure of PCR product. The corresponding mutations resulted in severely reduced FXIII activity and FXIII A-subunit antigen concentration, while FXIII B-subunit antigen remained normal or mildly decreased. Structural analysis demonstrated that the novel Ala378Pro mutation may cause a disruption of the FXIII catalytic triad leading to a non-functional protein which presumably undergoes premature degradation. In conclusion, the severe phenotype with high incidence of intracranial bleeding and haemarthrosis was in accordance with laboratory findings on FXIII and with severe molecular defects of the F13A gene.
Resumo:
FXIII deficiency is known as one of the rarest blood coagulation disorders. In this study, the phenotypic and in part genotypic data of 104 FXIII-deficient patients recorded from 1993 - 2005 are presented. The most common bleeding symptoms were subcutaneous bleeding (57%) followed by delayed umbilical cord bleeding (56%), muscle hematoma (49%), hemorrhage after surgery (40%), hemarthrosis (36%), and intracerebral bleeding (34%). Prophylactic treatment was initiated in about 70% of all patients. FXIII-B subunit-deficient patients had a milder phenotype than patients with FXIII-A subunit deficiency. The most frequent mutation affecting the F13A gene was a splice site mutation in intron 5 (IVS5-1G>A). This mutation was found in eight (17%) of 46 analyzed families. The haplotype analysis of patients carrying the IVS5-1A allele was consistent with a founder effect. The international registry (http://www.f13-database.de) will provide clinicians and scientists working on FXIII deficiency with a helpful tool to improve patient care and direct future studies towards better understanding and treatment of the disease.
Resumo:
The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.