117 resultados para Growth factors locally produced
Resumo:
Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Resumo:
The network regulating human adrenal development is complex. Studies of patients with adrenal insufficiency due to gene mutations established a central role for transcription factors GLI3, SF1 and DAX1 in the initial steps of adrenal formation. Adrenal differentiation seems to depend on adrenocorticotropic hormone (ACTH) stimulation and signalling, including biosynthesis and action of POMC, PC1, TPIT, MC2R, MRAP and ALADIN, all of which cause adrenocortical hypoplasia when mutated in humans. Studies of knockout mice revealed many more factors involved in adrenal development; however, in contrast to rodents, in humans several of those factors had no adrenal phenotype when mutated (e.g. WT1, WNT4) or, alternatively, human mutations have not (yet) been identified. Tissue profiling of fetal and adult adrenals suggested 69 genes involved in adrenal development. Among them were genes coding for steroidogenic enzymes, transcription and growth factors, signalling molecules, regulators of cell cycle and angiogenesis, and extracellular matrix proteins; however, the exact role of most of them remains to be elucidated.
Resumo:
There is increasing interest in the search for therapeutic options for diseases and injuries of the central nervous system (CNS), for which currently no effective treatment strategies are available. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as human foetal tissue, genetically modified cell lines, embryonic or somatic stem cells. Preclinical and clinical trials have shown promising results in neurodegenerative disorders, like Parkinson's and Huntington's disease, but also ischaemic stroke, intracerebral haemorrhage, demyelinating disorders, epilepsy and traumatic lesions of the brain and spinal cord. Other studies have focused on finding new ways to activate and direct endogenous repair mechanisms in the CNS, eg, by exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Neuroprotective drugs may offer an additional tool for improving neuronal survival in acute or chronic CNS diseases. Importantly however, a number of scientific issues need to be addressed in order to permit the introduction of these experimental techniques in the wider clinical setting.
Resumo:
Intracerebral hemorrhage (ICH), for which no effective treatment strategy is currently available, constitutes one of the most devastating forms of stroke. As a result, developing therapeutic options for ICH is of great interest to the medical community. The 3 potential therapies that have the most promise are cell replacement therapy, enhancing endogenous repair mechanisms, and utilizing various neuroprotective drugs. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as embryonic or somatic stem cells, umbilical cord blood, and genetically modified cell lines. Early experimental data showing the benefits of cell transplantation on functional recovery after ICH have been promising. Nevertheless, several studies have focused on another therapeutic avenue, investigating novel ways to activate and direct endogenous repair mechanisms in the central nervous system, through exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Lastly, neuroprotective drugs may offer an additional tool for improving neuronal survival in the perihematomal area. However, a number of scientific issues must be addressed before these experimental techniques can be translated into clinical therapy. In this review, the authors outline the recent advances in the basic science of treatment strategies for ICH.
Resumo:
BACKGROUND & AIMS: Little is known about how endothelial cells respond to injury, regulate hepatocyte turnover and reconstitute the hepatic vasculature. We aimed to determine the effects of the vascular ectonucleotidase CD39 on sinusoidal endothelial cell responses following partial hepatectomy and to dissect purinergic and growth factor interactions in this model. METHODS: Parameters of liver injury and regeneration, as well as the kinetics of hepatocellular and sinusoidal endothelial cell proliferation, were assessed following partial hepatectomy in mice that do not express CD39, that do not express ATP/UTP receptor P2Y2, and in controls. The effects of extracellular ATP on vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-6 responses were determined in vivo and in vitro. Phosphorylation of the endothelial VEGF receptor in response to extracellular nucleotides and growth factors was assessed in vitro. RESULTS: After partial hepatectomy, expression of the vascular ectonucleotidase CD39 increased on sinusoidal endothelial cells. Targeted disruption of CD39 impaired hepatocellular regeneration, reduced angiogenesis, and increased hepatic injury, resulting in pronounced vascular endothelial apoptosis, and decreased survival. Decreased HGF release by sinusoidal endothelial cells, despite high levels of VEGF, reduced paracrine stimulation of hepatocytes. Failure of VEGF receptor-2/KDR transactivation by extracellular nucleotides on CD39-null endothelial cells was associated with P2Y2 receptor desensitization. CONCLUSIONS: Regulated phosphohydrolysis of extracellular nucleotides by CD39 coordinates both hepatocyte and endothelial cell proliferation following partial hepatectomy. Lack of CD39 activity is associated with decreased hepatic regeneration and failure of vascular reconstitution.
Resumo:
In failing hearts cardiomyocytes undergo alterations in cytoskeleton structure, contractility and viability. It is not known presently, how stress-induced changes of myofibrils correlate with markers for cell death and contractile function in cardiomyocytes. Therefore, we have studied the progression of contractile dysfunction, myofibrillar damage and cell death in cultured adult cardiomyocytes exposed to the cancer therapy doxorubicin. We demonstrate, that long-term cultured adult cardiomyocytes, a well-established model for the study of myofibrillar structure and effects of growth factors, can also be used to assess contractility and calcium handling. Adult rat ventricular myocytes (ARVM) were isolated and cultured for a total of 14 days in serum containing medium. The organization of calcium-handling proteins and myofibrillar structure in freshly isolated and in long-term cultured adult cardiomyocytes was studied by immunofluorescence and electron microscopy. Excitation contraction-coupling was analyzed by fura 2 and video edge detection in electrically paced cardiomyocytes forming a monolayer, and cell death and viability was measured by TUNEL assay, LDH release, MTT assay, and Western blot for LC3. Adult cardiomyocytes treated with Doxo showed apoptosis and necrosis only at supraclinical concentrations. Treated cells displayed merely alterations in cytoskeleton organization and integrity concomitant with contractile dysfunction and up-regulation of autophagosome formation, but no change in total sarcomeric protein content. We propose, that myofibrillar damage contributes to contractile dysfunction prior to cell death in adult cardiomyocytes exposed to clinically relevant concentrations of anthracyclines.
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Resumo:
Blood supply is a critical issue in most tissue engineering approaches for large defect healing. As vessel ingrowth from surrounding tissues is proven to be insufficient, current strategies are focusing on the neo-vascularisation process. In the present study, we developed an in vitro pre-vascularised construct using 3D polyurethane (PU) scaffolds, based on the association of human Endothelial Progenitor Cells (EPC, CD34+ and CD133+) with human Mesenchymal Stem Cells (MSC). We showed the formation of luminal tubular structures in the co-seeded scaffolds as early as day 7 in culture. These tubular structures were proven positive for endothelial markers von Willebrand Factor and PECAM-1. Of special significance in our constructs is the presence of CD146-positive cells, as a part of the neovasculature scaffolding. These cells, coming from the mesenchymal stem cells population (MSC or EPC-depleted MSC), also expressed other markers of pericyte cells (NG2 and αSMA) that are known to play a pivotal function in the stabilisation of newly formed pre-vascular networks. In parallel, in co-cultures, osteogenic differentiation of MSCs occurred earlier when compared to MSCs monocultures, suggesting the close cooperation between the two cell populations. The presence of angiogenic factors (from autologous platelet lysates) in association with osteogenic factors seems to be crucial for both cell populations' cooperation. These results are promising for future clinical applications, as all components (cells, growth factors) can be prepared in an autologous way.
Resumo:
BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.
Resumo:
STUDY DESIGN Descriptive anatomical study on ovine and human cadaveric lumbar spinal segments. OBJECTIVE To describe the alternative transpedicular approach to deliver therapeutic agents into intervertebral disc (IVD). SUMMARY OF BACKGROUND DATA The present delivery approach of therapeutic agents (growth factors/cells/hydrogels) within the IVD is through injection, via the annulus fibrosus (AF). However, it has recently been demonstrated that small needle puncture of the AF leads to further degeneration and disc herniation. In addition, the injected material has a high chance to be extruded through the AF injury. METHODS Lumbar ovine and human spinal segments were used. Under fluoroscopy, a 2-mm Kirschner wire was introduced in the caudal vertebra through the pedicle and the inferior endplate to the nucleus pulposus. Gross anatomy analysis and high-resolution peripheral quantitative computed tomography (HR-pQCT) were performed to assess the right position of the wire in pedicles. Discography and nucleotomy were performed using a 14G cannula insertion or a 2-mm arthroscopic shaver blade, respectively. Nucleoplasty was also performed with agarose gel/contrast agent and imaged with HR-pQCT. RESULTS Gross anatomy, fluoroscopy, and HR-pQCT images showed that the nucleus pulposus could be approached through the endplate via the pedicle without affecting the spinal canal and the neural foramina. The contrast agent was delivered into the IVD and nucleus pulposus was removed from the disc and filled with agarose gel. CONCLUSION This study describes how a transpedicular approach can be used as an alternative route to deliver therapeutic agents to the disc without disruption of the AF showing the potential use of this technique in preclinical research and highlighting its clinical relevance for IVD regeneration.
Resumo:
The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.
Resumo:
Colostrum (COL) contains cytokines and growth factors that may enhance intestinal development in neonates. The hypothesis of this study was that besides providing immunoglobulins, COL is important for intestinal function and meconium release in foals. Newborn foals were either fed COL (n = 5) or an equal amount of milk replacer (MR, n = 7) during the first 24 hours of life. To ensure passive immunity, all foals received 1 L plasma. Postnatal development, meconium release, intestinal motility, white blood cell count, insulin-like growth factor 1, and intestinal absorptive function (xylose absorption test) were evaluated. Clinical findings and meconium release were not affected by feeding of COL or MR. Ultrasonography revealed a slightly larger jejunum and stomach in group COL versus MR (P < 0.05). The percentage of polymorphonuclear leucocytes was higher in foals of group MR versus group COL (P < 0.05) and the percentage of lymphocytes was lower in MR compared with COL foals (P < 0.05). Plasma insulin-like growth factor 1 concentration increased during the first 14 days after birth in both groups. A xylose absorption test on Day 5 revealed similar increases in plasma xylose concentrations after oral intake. In conclusion, feeding of COL versus MR was without effect on meconium release and intestinal absorptive function. Differences between foals fed COL and MR with regard to intestinal function are apparently without clinical relevance. In foals that have not received maternal COL, there is no major risk of intestinal problems if they are fed MR and provided with immunoglobulins by transfusion of plasma.
Resumo:
Commercially available assays for the simultaneous detection of multiple inflammatory and cardiac markers in porcine blood samples are currently lacking. Therefore, this study was aimed at developing a bead-based, multiplexed flow cytometric assay to simultaneously detect porcine cytokines [interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor alpha], chemokines (IL-8 and monocyte chemotactic protein 1), growth factors [basic fibroblast growth factor (bFGF), vascular endothelial growth factor, and platelet-derived growth factor-bb], and injury markers (cardiac troponin-I) as well as complement activation markers (C5a and sC5b-9). The method was based on the Luminex xMAP technology, resulting in the assembly of a 6- and 11-plex from the respective individual singleplex situation. The assay was evaluated for dynamic range, sensitivity, cross-reactivity, intra-assay and interassay variance, spike recovery, and correlation between multiplex and commercially available enzyme-linked immunosorbent assay as well as the respective singleplex. The limit of detection ranged from 2.5 to 30,000 pg/ml for all analytes (6- and 11-plex assays), except for soluble C5b-9 with a detection range of 2-10,000 ng/ml (11-plex). Typically, very low cross-reactivity (<3% and <1.4% by 11- and 6-plex, respectively) between analytes was found. Intra-assay variances ranged from 4.9 to 7.4% (6-plex) and 5.3 to 12.9% (11-plex). Interassay variances for cytokines were between 8.1 and 28.8% (6-plex) and 10.1 and 26.4% (11-plex). Correlation coefficients with singleplex assays for 6-plex as well as for 11-plex were high, ranging from 0.988 to 0.997 and 0.913 to 0.999, respectively. In this study, a bead-based porcine 11-plex and 6-plex assay with a good assay sensitivity, broad dynamic range, and low intra-assay variance and cross-reactivity was established. These assays therefore represent a new, useful tool for the analysis of samples generated from experiments with pigs.
Resumo:
Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.
Resumo:
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.