94 resultados para Geography Climate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European Mediterranean region is governed by a characteristic climate of summer drought that is likely to increase in duration and intensity under predicted climate change. However, large-scale network analyses investigating spatial aspects of pre-instrumental drought variability for this biogeographic zone are still scarce. In this study we introduce 54 mid- to high-elevation tree-ring width (TRW) chronologies comprising 2186 individual series from pine trees (Pinus spp.). This compilation spans a 4000-km east–west transect from Spain to Turkey, and was subjected to quality control and standardization prior to the development of site chronologies. A principal component analysis (PCA) was applied to identify spatial growth patterns during the network's common period 1862–1976, and new composite TRW chronologies were developed and investigated. The PCA reveals a common variance of 19.7% over the 54 Mediterranean pine chronologies. More interestingly, a dipole pattern in growth variability is found between the western (15% explained variance) and eastern (9.6%) sites, persisting back to 1330 AD. Pine growth on the Iberian Peninsula and Italy favours warm early growing seasons, but summer drought is most critical for ring width formation in the eastern Mediterranean region. Synoptic climate dynamics that have been in operation for the last seven centuries have been identified as the driving mechanism of a distinct east–west dipole in the growth variability of Mediterranean pines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential effects of climatic changes on natural risks are widely discussed. But the formulation of strategies for adapting risk management practice to climate changes requires knowledge of the related risks for people and economic values. The main goals of this work were (1) the development of a method for analysing and comparing risks induced by different natural hazard types, (2) highlighting the most relevant natural hazard processes and related damages, (3) the development of an information system for the monitoring of the temporal development of natural hazard risk and (4) the visualisation of the resulting information for the wider public. A comparative exposure analysis provides the basis for pointing out the hot spots of natural hazard risks in the province of Carinthia, Austria. An analysis of flood risks in all municipalities provides the basis for setting the priorities in the planning of flood protection measures. The methods form the basis for a monitoring system that periodically observes the temporal development of natural hazard risks. This makes it possible firstly to identify situations in which natural hazard risks are rising and secondly to differentiate between the most relevant factors responsible for the increasing risks. The factors that most influence the natural risks could be made evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goals of this study were to identifythe alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied. The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45′S, 67°45′W, 4140 m a.s.l., 13.5 km2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (∼200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the last millennium, mankind was affected by prolonged deviations from the climate mean state. While periods like the Maunder Minimum in the 17th century have been assessed in greater detail, earlier cold periods such as the 15th century received much less attention due to the sparse information available. Based on new evidence from different sources ranging from proxy archives to model simulations, it is now possible to provide an end-to-end assessment about the climate state during an exceptionally cold period in the 15th century, the role of internal, unforced climate variability and external forcing in shaping these extreme climatic conditions, and the impacts on and responses of the medieval society in Central Europe. Climate reconstructions from a multitude of natural and human archives indicate that, during winter, the period of the early Spörer Minimum (1431–1440 CE) was the coldest decade in Central Europe in the 15th century. The particularly cold winters and normal but wet summers resulted in a strong seasonal cycle that challenged food production and led to increasing food prices, a subsistence crisis, and a famine in parts of Europe. As a consequence, authorities implemented adaptation measures, such as the installation of grain storage capacities, in order to be prepared for future events. The 15th century is characterised by a grand solar minimum and enhanced volcanic activity, which both imply a reduction of seasonality. Climate model simulations show that periods with cold winters and strong seasonality are associated with internal climate variability rather than external forcing. Accordingly, it is hypothesised that the reconstructed extreme climatic conditions during this decade occurred by chance and in relation to the partly chaotic, internal variability within the climate system.