87 resultados para FRACTURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While bisphosphonates reduce fracture risk over 3 to 5 years, the optimal duration of treatment is uncertain. In a randomized extension study (E1) of the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg annually for 6 years showed maintenance of bone mineral density (BMD), decrease in morphometric vertebral fractures, and a modest reduction in bone turnover markers (BTMs) compared with discontinuation after 3 years. To investigate the longer-term efficacy and safety of ZOL, a second extension (E2) was conducted to 9 years in which women on ZOL for 6 years in E1 were randomized to either ZOL (Z9) or placebo (Z6P3) for 3 additional years. In this multicenter, randomized, double-blind study, 190 women were randomized to Z9 (n=95) and Z6P3 (n=95). The primary endpoint was change in total hip BMD at year 9 vs. year 6 in Z9 compared with Z6P3. Other secondary endpoints included fractures, BTMs, and safety. From year 6 to 9, the mean change in total hip BMD was -0.54% in Z9 vs. -1.31% in Z6P3 (difference 0.78%; 95% confidence interval [CI]: -0.37%, 1.93%; p=0.183). BTMs showed small, non-significant increases in those who discontinued after 6 years compared with those who continued for 9 years. The number of fractures was low and did not significantly differ by treatment. While generally safe, there was a small increase in cardiac arrhythmias (combined serious and non-serious) in the Z9 group but no significant imbalance in other safety parameters. The results suggest almost all patients who have received six annual ZOL infusions can stop medication for up to 3 years with apparent maintenance of benefits. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION To present the accuracy of reduction, complications and results two years after open reduction and internal fixation of displaced acetabular fractures involving the anterior column (AC) through the Pararectus approach. Frequencies for conversion to total hip replacement in the early follow up, the clinical outcome in preserved hips, and the need for an extension of the approach (1st window of the ilioinguinal approach) are compared to the literature about the modified Stoppa approach. METHODS Forty-eight patients (mean age 62 years, range: 16–98; 41 male) with displaced acetabular fractures involving the AC (AC: n = 9; transverse fracture: n = 2; AC and hemitransverse: n = 24; both column: n = 13) were treated between 12/2009 and 12/2011 using the Pararectus approach. Surgical data and accuracy of reduction (using computed tomography) were assessed. Patients were routinely followed up at eight weeks, 6, 12 and 24 months postoperatively. Failure was defined as the need for total hip arthroplasty. Twenty-four months postoperatively the outcome was rated according to Matta. RESULTS In four patients there were four intraoperative complications (minor vascular damage in two, small perforations of the peritoneum in two) which were managed intraoperatively. Fracture reduction showed statistically significant decreases (mean ± SD, pre- vs. postoperative, in mm) in “step-offs”: 2.6 ± 1.9 vs. 0.1 ± 0.3, p < 0.001 and “gaps”: 11.2 ± 6.8 vs. 0.7 ± 0.9, p < 0.001. Accuracy of reduction was “anatomical” in 45, “imperfect” in three. Five (13%) from 38 available patients required a total hip arthroplasty. Of 33 patients with a preserved hip the clinical outcome was graded as “excellent” in 13 or “good” in 20; radiographically, 27 were graded as “excellent”, four as “good” and two as “fair”. An extension of the approach was infrequently used (1st window ilioinguinal approach in 2%, mini-incision at the iliac crest in 21%). CONCLUSION In the treatment of acetabular fractures involving the anterior column the Pararectus approach allowed for anatomic restoration with minimal access morbidity. Results obtained by means of the Pararectus approach after two years at least parallel those reported after utilisation of the modified Stoppa approach. In contrast to the modified Stoppa approach, a relevant extension of the Pararectus approach was almost not necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE Associations between subclinical thyroid dysfunction and fractures are unclear and clinical trials are lacking. OBJECTIVE To assess the association of subclinical thyroid dysfunction with hip, nonspine, spine, or any fractures. DATA SOURCES AND STUDY SELECTION The databases of MEDLINE and EMBASE (inception to March 26, 2015) were searched without language restrictions for prospective cohort studies with thyroid function data and subsequent fractures. DATA EXTRACTION Individual participant data were obtained from 13 prospective cohorts in the United States, Europe, Australia, and Japan. Levels of thyroid function were defined as euthyroidism (thyroid-stimulating hormone [TSH], 0.45-4.49 mIU/L), subclinical hyperthyroidism (TSH <0.45 mIU/L), and subclinical hypothyroidism (TSH ≥4.50-19.99 mIU/L) with normal thyroxine concentrations. MAIN OUTCOME AND MEASURES The primary outcome was hip fracture. Any fractures, nonspine fractures, and clinical spine fractures were secondary outcomes. RESULTS Among 70,298 participants, 4092 (5.8%) had subclinical hypothyroidism and 2219 (3.2%) had subclinical hyperthyroidism. During 762,401 person-years of follow-up, hip fracture occurred in 2975 participants (4.6%; 12 studies), any fracture in 2528 participants (9.0%; 8 studies), nonspine fracture in 2018 participants (8.4%; 8 studies), and spine fracture in 296 participants (1.3%; 6 studies). In age- and sex-adjusted analyses, the hazard ratio (HR) for subclinical hyperthyroidism vs euthyroidism was 1.36 for hip fracture (95% CI, 1.13-1.64; 146 events in 2082 participants vs 2534 in 56,471); for any fracture, HR was 1.28 (95% CI, 1.06-1.53; 121 events in 888 participants vs 2203 in 25,901); for nonspine fracture, HR was 1.16 (95% CI, 0.95-1.41; 107 events in 946 participants vs 1745 in 21,722); and for spine fracture, HR was 1.51 (95% CI, 0.93-2.45; 17 events in 732 participants vs 255 in 20,328). Lower TSH was associated with higher fracture rates: for TSH of less than 0.10 mIU/L, HR was 1.61 for hip fracture (95% CI, 1.21-2.15; 47 events in 510 participants); for any fracture, HR was 1.98 (95% CI, 1.41-2.78; 44 events in 212 participants); for nonspine fracture, HR was 1.61 (95% CI, 0.96-2.71; 32 events in 185 participants); and for spine fracture, HR was 3.57 (95% CI, 1.88-6.78; 8 events in 162 participants). Risks were similar after adjustment for other fracture risk factors. Endogenous subclinical hyperthyroidism (excluding thyroid medication users) was associated with HRs of 1.52 (95% CI, 1.19-1.93) for hip fracture, 1.42 (95% CI, 1.16-1.74) for any fracture, and 1.74 (95% CI, 1.01-2.99) for spine fracture. No association was found between subclinical hypothyroidism and fracture risk. CONCLUSIONS AND RELEVANCE Subclinical hyperthyroidism was associated with an increased risk of hip and other fractures, particularly among those with TSH levels of less than 0.10 mIU/L and those with endogenous subclinical hyperthyroidism. Further study is needed to determine whether treating subclinical hyperthyroidism can prevent fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Locking compression plates are used in various configurations with lack of detailed information on consequent bone healing. Study design In this in vivo study in sheep 5 different applications of locking compression plate (LCP) were tested using a 45° oblique osteotomy simulating simple fracture pattern. 60 Swiss Alpine sheep where assigned to 5 different groups with 12 sheep each (Group 1: interfragmentary lag screw and an LCP fixed with standard cortex screws as neutralisation plate; Group 2: interfragmentary lag screw and LCP with locking head screws; Group 3: compression plate technique (hybrid construct); Group 4: internal fixator without fracture gap; Group 5: internal fixator with 3 mm gap at the osteotomy site). One half of each group (6 sheep) was monitored for 6 weeks, and the other half (6 sheep) where followed for 12 weeks. Methods X-rays at 3, 6, 9 and 12 weeks were performed to monitor the healing process. After sacrifice operated tibiae were tested biomechanically for nondestructive torsion and compared to the tibia of the healthy opposite side. After testing specimens were processed for microradiography, histology, histomorphometry and assessment of calcium deposition by fluorescence microscopy. Results In all groups bone healing occurred without complications. Stiffness in biomechanical testing showed a tendency for higher values in G2 but results were not statistically significant. Values for G5 were significantly lower after 6 weeks, but after 12 weeks values had improved to comparable results. For all groups, except G3, stiffness values improved between 6 and 12 weeks. Histomorphometrical data demonstrate endosteal callus to be more marked in G2 at 6 weeks. Discussion and conclusion All five configurations resulted in undisturbed bone healing and are considered safe for clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Mechanical evaluation of a novel screw position used for repair in a type III distal phalanx fracture model and assessment of solar canal penetration (SCP). STUDY DESIGN: Experimental study. SAMPLE POPULATION: Disarticulated equine hooves (n = 24) and 24 isolated distal phalanges. METHODS: Hooves/distal phalanges cut in a sagittal plane were repaired with 1 of 2 different cortical screw placements in lag fashion. In group 1 (conventional screw placement), the screw was inserted halfway between the proximal border of the solar canal (SC) and the subchondral bone surface on a line parallel to the dorsal cortex, whereas in group 2, the screw was inserted more palmar/plantar, where a perpendicular line drawn from the group 1 position reached the palmar/plantar cortex. Construct strength was evaluated by 3-point bending to failure. SCP was assessed by CT imaging and macroscopically. RESULTS: Screws were significantly longer in group 2 and in forelimbs. Group 2 isolated distal phalanges had a significantly more rigid fixation compared with the conventional screw position (maximum point at failure 31%, bending stiffness 41% higher). Lumen reduction of the SC was observed in 13/52 specimens (all from group 2), of which 9 were forelimbs. CONCLUSIONS: More distal screw positioning compared with the conventionally recommended screw position for internal fixation of type III distal phalangeal fractures allows placement of a longer screw and renders a more rigid fracture fixation. The novel screw position, however, carries a higher risk of SCP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited data exist on the efficacy of long-term therapies for osteoporosis. In osteoporotic postmenopausal women receiving denosumab for 7 years, nonvertebral fracture rates significantly decreased in years 4-7 versus years 1-3. This is the first demonstration of a further benefit on fracture outcomes with long-term therapy for osteoporosis. INTRODUCTION This study aimed to evaluate whether denosumab treatment continued beyond 3 years is associated with a further reduction in nonvertebral fracture rates. METHODS Participants who completed the 3-year placebo-controlled Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were invited to participate in an open-label extension. The present analysis includes 4,074 postmenopausal women with osteoporosis (n = 2,343 long-term; n = 1,731 cross-over) who enrolled in the extension, missed ≤1 dose during their first 3 years of denosumab treatment, and continued into the fourth year of treatment. Comparison of nonvertebral fracture rates during years 1-3 of denosumab with that of the fourth year and with the rate during years 4-7 was evaluated. RESULTS For the combined group, the nonvertebral fracture rate per 100 participant-years was 2.15 for the first 3 years of denosumab treatment (referent) and 1.36 in the fourth year (rate ratio [RR] = 0.64; 95 % confidence interval (CI) = 0.48 to 0.85, p = 0.003). Comparable findings were observed in the groups separately and when nonvertebral fracture rates during years 1-3 were compared to years 4-7 in the long-term group (RR = 0.79; 95 % CI = 0.62 to 1.00, p = 0.046). Fracture rate reductions in year 4 were most prominent in subjects with persisting low hip bone mineral density (BMD). CONCLUSIONS Denosumab treatment beyond 3 years was associated with a further reduction in nonvertebral fracture rate that persisted through 7 years of continuous denosumab administration. The degree to which denosumab further reduces nonvertebral fracture risk appears influenced by the hip bone density achieved with initial therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data concerning the link between severity of abdominal aortic calcification (AAC) and fracture risk in postmenopausal women are discordant. This association may vary by skeletal site and duration of follow-up. Our aim was to assess the association between the AAC severity and fracture risk in older women over the short- and long term. This is a case-cohort study nested in a large multicenter prospective cohort study. The association between AAC and fracture was assessed using Odds Ratios (OR) and 95% confidence intervals (95%CI) for vertebral fractures and using Hazard Risks (HR) and 95%CI for non-vertebral and hip fractures. AAC severity was evaluated from lateral spine radiographs using Kauppila's semiquantitative score. Severe AAC (AAC score 5+) was associated with higher risk of vertebral fracture during 4 years of follow-up, after adjustment for confounders (age, BMI, walking, smoking, hip bone mineral density, prevalent vertebral fracture, systolic blood pressure, hormone replacement therapy) (OR=2.31, 95%CI: 1.24-4.30, p<0.01). In a similar model, severe AAC was associated with an increase in the hip fracture risk (HR=2.88, 95%CI: 1.00-8.36, p=0.05). AAC was not associated with the risk of any non-vertebral fracture. AAC was not associated with the fracture risk after 15 years of follow-up. In elderly women, severe AAC is associated with higher short-term risk of vertebral and hip fractures, but not with the long-term risk of these fractures. There is no association between AAC and risk of non-vertebral-non-hip fracture in older women. Our findings lend further support to the hypothesis that AAC and skeletal fragility are related.