110 resultados para Euclidean Gravity
Resumo:
Several techniques have been proposed to exploit GNSS-derived kinematic orbit information for the determination of long-wavelength gravity field features. These methods include the (i) celestial mechanics approach, (ii) short-arc approach, (iii) point-wise acceleration approach, (iv) averaged acceleration approach, and (v) energy balance approach. Although there is a general consensus that—except for energy balance—these methods theoretically provide equivalent results, real data gravity field solutions from kinematic orbit analysis have never been evaluated against each other within a consistent data processing environment. This contribution strives to close this gap. Target consistency criteria for our study are the input data sets, period of investigation, spherical harmonic resolution, a priori gravity field information, etc. We compare GOCE gravity field estimates based on the aforementioned approaches as computed at the Graz University of Technology, the University of Bern, the University of Stuttgart/Austrian Academy of Sciences, and by RHEA Systems for the European Space Agency. The involved research groups complied with most of the consistency criterions. Deviations only occur where technical unfeasibility exists. Performance measures include formal errors, differences with respect to a state-of-the-art GRACE gravity field, (cumulative) geoid height differences, and SLR residuals from precise orbit determination of geodetic satellites. We found that for the approaches (i) to (iv), the cumulative geoid height differences at spherical harmonic degree 100 differ by only ≈10 % ; in the absence of the polar data gap, SLR residuals agree by ≈96 % . From our investigations, we conclude that real data analysis results are in agreement with the theoretical considerations concerning the (relative) performance of the different approaches.
Resumo:
The GOCE satellite was orbiting the Earth in a Sun-synchronous orbit at a very low altitude for more than 4 years. This low orbit and the availability of high-quality data make it worthwhile to assess the contribution of GOCE GPS data to the recovery of both the static and time-variable gravity fields. We use the kinematic positions of the official GOCE precise science orbit (PSO) product to perform gravity field determination using the Celestial Mechanics Approach. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator. Their size is significantly coupled with the ionospheric density and thus generally increasing over the mission period. The systematic errors may be traced back to the kinematic positions of the PSO product and eventually to the ionosphere-free GPS carrier phase observations used for orbit determination. As they cannot be explained by the current higher order ionospheric correction model recommended by the IERS Conventions 2010, an empirical approach is presented by discarding GPS data affected by large ionospheric changes. Such a measure yields a strong reduction of the systematic errors along the geomagnetic equator in the gravity field recovery, and only marginally reduces the set of useable kinematic positions by at maximum 6 % for severe ionosphere conditions. Eventually it is shown that GOCE gravity field solutions based on kinematic positions have a limited sensitivity to the largest annual signal related to land hydrology.
Resumo:
We present the results from a simultaneous estimation of the gravity field, Earth rotation parameters, and station coordinates from combined SLR solutions incorporating up to nine geodetic satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Lares, Blits and LARES. These solutions cover all three pillars of satellite geodesy and ensure full consistency between the Earth rotation parameters, gravity field coefficients, and geometry-related parameters. We address benefits emerging from such an approach and discuss particular aspects and limitations of the gravity field recovery using SLR data. The current accuracy of SLR-derived polar motion, by the means of WRMS w.r.t. IERS-08-C04 series, is at a level of 118-149 μas, which corresponds to 4 to 5 mm on the Earth’s surface. The WRMS of SLR-derived Length-of-Day, when the gravity field parameters are simultaneously estimated, is 56 μs/day, corresponding to about 26 mm on the ground, and the mean bias of SLR-derived Length-of-Day is 6.3 μs/day, corresponding to 3 mm.
Resumo:
The Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment is conducted by an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration of antihydrogen in the local field of the Earth, with Δg/g = 1% precision as a first achievement. The idea is to produce cold (100 mK) antihydrogen ( ¯H) through a pulsed charge exchange reaction by overlapping clouds of antiprotons, from the Antiproton Decelerator (AD) and positronium atoms inside a Penning trap. The antihydrogen has to be produced in an excited Rydberg state to be subsequently accelerated to form a beam. The deflection of the antihydrogen beam can then be measured by using a moir´e deflectometer coupled to a position sensitive detector to register the impact point of the anti-atoms through the vertex reconstruction of their annihilation products. After being approved in late 2008, AEgIS started taking data in a commissioning phase in 2012. This paper presents an outline of the experiment with a brief overview of its physics motivation and of the state-of-the-art of the g measurement on antimatter. Particular attention is given to the current status of the emulsion-based position detector needed to measure the ¯H sag in AEgIS.
Resumo:
AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir´e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed.