77 resultados para Enzymatic assay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Canine S100 calcium-binding protein A12 (cS100A12) shows promise as biomarker of inflammation in dogs. A previously developed cS100A12-radioimmunoassay (RIA) requires radioactive tracers and is not sensitive enough for fecal cS100A12 concentrations in 79% of tested healthy dogs. An ELISA assay may be more sensitive than RIA and does not require radioactive tracers. OBJECTIVE The purpose of the study was to establish a sandwich ELISA for serum and fecal cS100A12, and to establish reference intervals (RI) for normal healthy canine serum and feces. METHODS Polyclonal rabbit anti-cS100A12 antibodies were generated and tested by Western blotting and immunohistochemistry. A sandwich ELISA was developed and validated, including accuracy and precision, and agreement with cS100A12-RIA. The RI, stability, and biologic variation in fecal cS100A12, and the effect of corticosteroids on serum cS100A12 were evaluated. RESULTS Lower detection limits were 5 μg/L (serum) and 1 ng/g (fecal), respectively. Intra- and inter-assay coefficients of variation were ≤ 4.4% and ≤ 10.9%, respectively. Observed-to-expected ratios for linearity and spiking recovery were 98.2 ± 9.8% (mean ± SD) and 93.0 ± 6.1%, respectively. There was a significant bias between the ELISA and the RIA. The RI was 49-320 μg/L for serum and 2-484 ng/g for fecal cS100A12. Fecal cS100A12 was stable for 7 days at 23, 4, -20, and -80°C; biologic variation was negligible but variation within one fecal sample was significant. Corticosteroid treatment had no clinically significant effect on serum cS100A12 concentrations. CONCLUSIONS The cS100A12-ELISA is a precise and accurate assay for serum and fecal cS100A12 in dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.