79 resultados para EPSPs inhibitors
Resumo:
BACKGROUND AND OBJECTIVE Inhibition of prolyl hydroxylases stimulates bone regeneration. Consequently, bone substitute materials were developed that release prolyl hydroxylase inhibitors. However, the impact of prolyl hydroxylase inhibitors released from these carriers on osteoclastogenesis is not clear. We therefore assessed the effect of bone substitute materials that release prolyl hydroxylase inhibitors on osteoclastogenesis. MATERIAL AND METHODS Dimethyloxalylglycine, desferrioxamine, and l-mimosine were lyophilized onto bovine bone mineral and hydroxyapatite, and supernatants were generated. Osteoclastogenesis was induced in murine bone marrow cultures in the presence of the supernatants from bone substitute materials. The formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity were determined. To test for possible effects on osteoclast progenitor cells, we measured the effect of the supernatants on proliferation and viability. In addition, experiments were performed where prolyl hydroxylase inhibitors were directly added to the bone marrow cultures. RESULTS We found that prolyl hydroxylase inhibitors released within the first hours from bone substitute materials reduce the number and activity of TRAP-positive multinucleated cells. In line with this, addition of prolyl hydroxylase inhibitors directly to the bone marrow cultures dose-dependently reduced the number of TRAP-positive multinucleated cells and the overall resorption activity. Moreover, the released prolyl hydroxylase inhibitors decreased proliferation but not viability of osteoclast progenitor cells. CONCLUSION Our results show that prolyl hydroxylase inhibitors released from bone substitute materials decrease osteoclastogenesis in murine bone marrow cultures.
Resumo:
Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca2+-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.
Resumo:
In 2006, hypomagnesemia was first described as a complication of proton-pump inhibitors. To address this issue, we systematically reviewed the literature. Hypomagnesemia, mostly associated with hypocalcemic hypoparathyroidism and hypokalemia, was reported in 64 individuals on long-term proton-pump inhibitors. Hypomagnesemia recurred following replacement of one proton-pump inhibitor with another but not with a histamine type-2 receptor antagonist. The association between proton-pump inhibitors and magnesium metabolism was addressed in 14 case-control, cross-sectional studies. An association was found in 11 of them: 6 reports found that the use of proton-pump inhibitors is associated per se with a tendency towards hypomagnesemia, 2 found that this tendency is more pronounced in patients concurrently treated with diuretics, carboplatin, or cisplatin, and 2 found a relevant tendency to hypomagnesemia in patients with poor renal function. Finally, findings likely reflecting decreased intestinal magnesium uptake were observed on treatment with proton-pump inhibitors. Three studies did not disclose any relationship between magnesium metabolism and treatment with histamine type-2 receptor antagonists. In conclusion, proton-pump inhibitors may cause hypomagnesemia. In these cases, switching to a histamine type-2 receptor antagonist is advised.