80 resultados para Detection sensitivity
Resumo:
Sentinel lymph node (SLN) detection techniques have the potential to change the standard of surgical care for patients with prostate cancer. We performed a lymphatic mapping study and determined the value of fluorescence SLN detection with indocyanine green (ICG) for the detection of lymph node metastases in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic lymph node dissection. A total of 42 patients received systematic or specific ICG injections into the prostate base, the midportion, the apex, the left lobe, or the right lobe. We found (1) that external and internal iliac regions encompass the majority of SLNs, (2) that common iliac regions contain up to 22% of all SLNs, (3) that a prostatic lobe can drain into the contralateral group of pelvic lymph nodes, and (4) that the fossa of Marcille also receives significant drainage. Among the 12 patients who received systematic ICG injections, 5 (42%) had a total of 29 lymph node metastases. Of these, 16 nodes were ICG positive, yielding 55% sensitivity. The complex drainage pattern of the prostate and the low sensitivity of ICG for the detection of lymph node metastases reported in our study highlight the difficulties related to the implementation of SNL techniques in prostate cancer. PATIENT SUMMARY There is controversy about how extensive lymph node dissection (LND) should be during prostatectomy. We investigated the lymphatic drainage of the prostate and whether sentinel node fluorescence techniques would be useful to detect node metastases. We found that the drainage pattern is complex and that the sentinel node technique is not able to replace extended pelvic LND.
Resumo:
The in-house Carba-NP and Blue-Carba tests were compared using 30 carbapenemase- and 33 non-producing Enterobacteriaceae. Tests were read by three operators. 100% sensitivity was reported for both tests, but Carba-NP was slightly more specific than Blue-Carba (98.9% vs. 91.7%). We describe potential sources of error during tests' preparation and reading.
Resumo:
Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.
Resumo:
The AEgIS experiment at CERN aims to perform the first direct measurement of gravitational interaction between matter and antimatter by measuring the deviation of a cold antihydrogen beam in the Earth gravitational field. The design of the experiment has been recently updated to include emulsion films as position sensitive detector. The submicrometric position accuracy of emulsions leads indeed to a significant improvement of the experimental sensitivity. We present results of preliminary tests and discuss perspectives for the final measurement.
Resumo:
Emulsion detectors feature a very high position resolution and consequently represent an ideal device when particle detection is required at the micrometric scale. This is the case of quantum interferometry studies with antimatter, where micrometric fringes have to be measured. In this framework, we designed and realized a new emulsion based detector characterized by a gel enriched in terms of silver bromide crystal contents poured on a glass plate. We tested the sensitivity of such a detector to low energy positrons in the range 10–20 keV . The obtained results prove that nuclear emulsions are highly efficient at detecting positrons at these energies. This achievement paves the way to perform matter-wave interferometry with positrons using this technology.