93 resultados para Crack Formation in Soils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern democratic systems, usually no single collective actor is able to decisively influence political decision-making. Instead, actors with similar preferences form coalitions in order to gain more influence in the policy process. In the Swiss political system in particular, institutional veto points and the consensual culture of policy-making provide strong incentives for actors to form large coalitions. Coalitions are thus especially important in political decision-making in Switzerland, and are accordingly a central focus of this book. According to one of our core claims - to understand the actual functioning of Swiss consensus democracy - one needs to extend the analysis beyond formal institutions to also include informal procedures and practices. Coalitions of actors play a crucial role in this respect. They are a cornerstone of decision-making structures, and they inform us about patterns of conflict, collaboration and power among actors. Looking at coalitions is all the more interesting in the Swiss political system, since the coalition structure is supposed to vary across policy processes. Given the absence of a fixed government coalition, actors need to form new coalitions in each policy process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested whether OPAHs were formed during 19-wk incubation of a fertile soil at optimum moisture in the dark. The soil had initial mean (±s.e., n = 3) concentrations of 22 ± 1.7 (Σ28PAHs) and 4.2 ± 0.34 μg g−1 (Σ14OPAHs). After 19 wk, individual PAH and OPAH concentrations had decreased by up to 14 and 37%, respectively. Decreases in % of initial concentrations were positively correlated with their KOW values for PAHs (r = 0.48, p = 0.022) and 9 OPAHs (r = 0.78, p = 0.013) but negatively, albeit not significantly, for 5 OPAHs (r = −0.75, p = 0.145) suggesting net formation of some OPAHs. The latter was supported by significantly increasing 1-indanone/fluorene ratios while the other OPAH to parent-PAH ratios remained constant or tended to increase. We conclude that OPAHs are formed in soils during microbial turnover of PAHs in a short time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental conditions in the tropics favor the formation of polar polycyclic aromatic compound (polar PACs, such as oxygenated PAHs [OPAHs] and azaarenes [AZAs]), but little is known about these hazardous compounds in tropical soils. The objectives of this work were to determine (i) the level of contamination of soils (0–5 and 5–10 cm layers) from the tropical metropolis of Bangkok (Thailand) with OPAHs and AZAs and (ii) the influence of urban emission sources and soil properties on the distribution of PACs. We hypothesized that the higher solar insolation and microbial activity in the tropics than in the temperate zone will lead to enhanced secondary formation of OPAHs. Hence, OPAH to related parent-PAH ratios will be higher in the tropical soils of Bangkok than in temperate soils of Bratislava and Gothenburg. The concentrations of ∑15OPAHs (range: 12–269 ng g−1) and ∑4AZAs (0.1–31 ng g−1) measured in soils of Bangkok were lower than those in several cities of the industrialized temperate zone. The ∑15OPAHs (r = 0.86, p < 0.01) and ∑4AZAs (r = 0.67, p < 0.01) correlated significantly with those of ∑20PAHs highlighting similar sources and related fate. The octanol–water partition coefficient did not explain the transport to the subsoil, indicating soil mixing as the reason for the polar PAC load of the lower soil layer. Data on PAC concentrations in soils of Bratislava and Gothenburg were taken from published literature. The individual OPAH to parent-PAH ratios in soils of Bangkok were mostly higher than those of Bratislava and Gothenburg (e.g. 9-fluorenone/fluorene concentration ratio was 12.2 ± 6.7, 5.6 ± 2.4, and 0.7 ± 02 in Bangkok, Bratislava and Gothenburg soils, respectively) supporting the view that tropical environmental conditions and higher microbial activity likely lead to higher OPAH to parent-PAH ratios in tropical than in temperate soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate-limiting step of dietary calcium absorption in the intestine requires the brush border calcium entry channel TRPV6. The TRPV6 gene was completely sequenced in 170 renal calcium stone patients. The frequency of an ancestral TRPV6 haplotype consisting of three non-synonymous polymorphisms (C157R, M378V, M681T) was significantly higher (P = 0.039) in calcium stone formers (8.4%; derived = 502, ancestral = 46) compared to non-stone-forming individuals (5.4%; derived = 645, ancestral = 37). Mineral metabolism was investigated on four different calcium regimens: (i) free-choice diet, (ii) low calcium diet, (iii) fasting and (iv) after a 1 g oral calcium load. When patients homozygous for the derived haplotype were compared with heterozygous patients, no differences were found with respect to the plasma concentrations of 1,25-vitamin D, PTH and calcium, and the urinary excretion of calcium. In one stone-forming patient, the ancestral haplotype was found to be homozygous. This patient had absorptive hypercalciuria. We therefore expressed the ancestral protein (157R+378V+681T) in Xenopus oocytes and found a significantly enhanced calcium permeability when tested by a (45)Ca(2+) uptake assay (7.11 +/- 1.93 versus 3.61 +/- 1.01 pmol/min/oocyte for ancestral versus derived haplotype, P < 0.01). These results suggest that the ancestral gain-of-function haplotype in TRPV6 plays a role in calcium stone formation in certain forms of absorptive hypercalciuria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphate release kinetics in soils are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Dissolution of phosphate-containing minerals induced by a changing rhizosphere equilibrium through proton input is one important mechanism that releases phosphate into bioavailable forms. Our objectives were (i) to determine phosphate release kinetics during H+ addition in calcareous soils of the Schwäbische Alb, Germany, and to assess the influence of (ii) land-use type (grassland vs. forest) and (iii) management intensity on reactive phosphate pools and phosphate release rate constants during H+ addition. Phosphate release kinetics were characterized by a large fast-reacting phosphatepool, which could be attributed to poorly-crystalline calcium phosphates, and a small slow-reacting phosphate pool probably originating from carbonate-bearing hydroxylapatite. Both reactive phosphate pools—as well as total phosphate concentrations (TP) in soil—were greater in grassland than in forest soils. In organically fertilized grassland soils, concentrations of released phosphate were higher than in unfertilized soils, likely because organic fertilizers contain poorly-crystalline phosphate compounds which are further converted into sparingly soluble phosphate forms. Because of an enriched slow-reacting phosphate pool, mown pastures were characterized by a more continuous slow phosphate release reaction in contrast to clear biphasic phosphate release patterns in meadows. Consequently, managing phosphate release kinetics via management measures is a valuable tool to evaluate longer-term P availability in soil in the context of finite rock phosphate reserves on earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration of radioactive and chemical contaminants in clay materials and argillaceous host rocks is characterised by diffusion and retention processes. Valuable information on such processes can be gained by combining diffusion studies at laboratory scale with field migration tests. In this work, the outcome of a multi-tracer in situ migration test performed in the Opalinus Clay formation in the Mont Terri underground rock laboratory (Switzerland) is presented. Thus, 1.16 x 10(5) Bq/L of HTO, 3.96 x 10(3) Bq/L of Sr-85, 6.29 x 10(2) Bq/L of Co-60, 2.01 x 10(-3) mol/L Cs, 9.10 x 10(-4) mol/L I and 1.04 x 10(-3) mol/L Br were injected into the borehole. The decrease of the radioisotope concentrations in the borehole was monitored using in situ gamma-spectrometry. The other tracers were analyzed with state-of-the-art laboratory procedures after sampling of small water aliquots from the reservoir. The diffusion experiment was carried out over a period of one year after which the interval section was overcored and analyzed. Based on the experimental data from the tracer evolution in the borehole and the tracer profiles in the rock, the diffusion of tracers was modelled with the numerical code CRUNCH. The results obtained for HTO (H-3), I- and Br- confirm previous lab and in situ diffusion data. Anionic fluxes into the formation were smaller compared to HTO because of anion exclusion effects. The migration of the cations Sr-85(2+), Cs+ and Co-60(2+) was found to be governed by both diffusion and sorption processes. For Sr-85(2+), the slightly higher diffusivity relative to HTO and the low sorption value are consistent with laboratory diffusion measurements on small-scale samples. In the case of Cs+, the numerically deduced high diffusivity and the Freundlich-type sorption behaviour is also supported by ongoing laboratory data. For Co, no laboratory diffusion data were yet available for comparison; however, the modelled data suggests that Co-60(2+) sorption was weaker than would be expected from available batch sorption data. Overall, the results demonstrate the feasibility of the experimental setup for obtaining high-quality diffusion data for conservative and sorbing tracers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.