262 resultados para Congenital Leptin Deficiency
Resumo:
While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn pups (n = 157) were randomized into a total of four postnatal feeding regimens: High/High (Control); High/Low (Depleted), Low/Low (Deficient); and Low/High (Repleted). Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001) which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01). We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.
Resumo:
The adequate replacement dose of estrogens during infancy and childhood is still not known in girls. Aromatase deficiency offers an excellent model to study how much estrogens are needed during infancy, childhood and adulthood.
Resumo:
Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.
Resumo:
The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.
Resumo:
Persistent left superior vena cava (LSVC) is a relatively frequent finding in congenital cardiac malformation. The scope of the study was to analyze the timing of diagnosis of persistent LSVC, the timing of diagnosis of associated anomalies of the coronary sinus, and the global impact on morbidity and mortality of persistent LSVC in children with congenital heart disease after cardiac surgery. Retrospective analysis of a cohort of children after cardiac surgery on bypass for congenital heart disease. Three hundred seventy-one patients were included in the study, and their median age was 2.75 years (IQR 0.65-6.63). Forty-seven children had persistent LSVC (12.7 %), and persistent LSVC was identified on echocardiography before surgery in 39 patients (83 %). In three patients (6.4 %) with persistent LSVC, significant inflow obstruction of the left ventricle developed after surgery leading to low output syndrome or secondary pulmonary hypertension. In eight patients (17 %), persistent LSVC was associated with a partially or completely unroofed coronary sinus and in two cases (4 %) with coronary sinus ostial atresia. Duration of mechanical ventilation was significantly shorter in the control group (1.2 vs. 3.0 days, p = 0.04), whereas length of stay in intensive care did not differ. Mortality was also significantly lower in the control group (2.5 vs. 10.6 %, p = 0.004). The results of study show that persistent LSVC in association with congenital cardiac malformation increases the risk of mortality in children with cardiac surgery on cardiopulmonary bypass. Recognition of a persistent LSVC and its associated anomalies is mandatory to avoid complications during or after cardiac surgery.
Resumo:
Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS(-/-)) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS(-/-) and AS(+/+) females were mated with AS(+/+) and AS(-/-) males, respectively, always generating AS(+/-) offspring. With maternal aldosterone deficiency in AS(-/-) mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS(-/-) had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS(-/-) females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS(-/-) was slightly improved and the differences in placental and fetal weights between AS(+/+) and AS(-/-) mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS(-/-) placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsia.
Resumo:
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.Journal of Investigative Dermatology advance online publication, 16 November 2006; doi:10.1038/sj.jid.5700615.
Resumo:
The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.
Resumo:
BACKGROUND: Retinochoroiditis is the most common ocular manifestation of congenital toxoplasmosis, but other associated ophthalmological pathologies can also occur. The aim of this study was to determine the nature of the latter in treated cases of the disease and to assess their impact on visual function. METHODS: Four hundred and thirty consecutive children with serologically confirmed congenital toxoplasmosis were included in this study. Data were prospectively collected using standardized ophthalmological assessment forms. The presence of retinochoroiditis and of associated pathologies was ascertained, and their impact on visual function was assessed. RESULTS: After a median follow-up of 12 years [range 0.6-26 years], 130 children manifested retinochoroiditis. We detected 22 foci of retinochoroiditis at birth and 264 additional ones during the follow-up period. Of these, 48 (17%) were active when first diagnosed. Twenty-five of the 130 children (19%) had other associated ocular pathologies. Of these, 21 (16%) had a strabismus, which was due to macular lesions in 86% of the cases; 7 (5.4%) presented with unilateral microphthalmia, and 4 (3%) with cataracts. Most of these events were detected after the onset of retinochoroiditis. None of the children presented with ocular involvement in the absence of chorioretinal lesions. Macular lesions occurred more frequently in children with associated pathologies (p<0.0001), and associated pathologies were likewise more common in individuals with macular lesions (p=0.0003). Visual impairment occurred in 31/130 cases, and in all but 3 of these eyes it was due not to an associated pathology but to macular retinochoroiditis. CONCLUSIONS: At the end of the follow-up period, ocular involvement existed in 30% of the treated children with congenital toxoplasmosis. Associated eye pathologies were manifested less frequently than anticipated. They may occur later in life and are an indirect marker of the severity of congenital toxoplasmosis, but they do not have a direct impact on visual acuity. The overall functional prognosis of congenital toxoplasmosis is better than would be expected on the basis of literature findings, with only 2 of the 130 children suffering bilateral visual impairment.
Resumo:
Background During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Methods Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Results Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii) zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii) zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. Conclusion The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require fundamental changes in standard national treatment of cases of P. vivax.
Resumo:
RATIONALE: ABCA3 mutations are known to cause fatal surfactant deficiency. OBJECTIVE: We studied ABCA3 protein expression in full-term newborns with unexplained respiratory distress syndrome (URDS) as well as the relevance of ABCA3 mutations for surfactant homeostasis. METHODS: Lung tissue of infants with URDS was analyzed for the expression of ABCA3 in type II pneumocytes. Coding exons of the ABCA3 gene were sequenced. Surfactant protein expression was studied by immunohistochemistry, immunoelectron microscopy, and Western blotting. RESULTS: ABCA3 protein expression was found to be greatly reduced or absent in 10 of 14 infants with URDS. Direct sequencing revealed distinct ABCA3 mutations clustering within vulnerable domains of the ABCA3 protein. A strong expression of precursors of surfactant protein B (pro-SP-B) but only low levels and aggregates of mature surfactant protein B (SP-B) within electron-dense bodies in type II pneumocytes were found. Within the matrix of electron-dense bodies, we detected precursors of SP-C (pro-SP-C) and cathepsin D. SP-A was localized in small intracellular vesicles, but not in electron-dense bodies. SP-A and pro-SP-B were shown to accumulate in the intraalveolar space, whereas mature SP-B and SP-C were reduced or absent, respectively. CONCLUSION: Our data provide evidence that ABCA3 mutations are associated not only with a deficiency of ABCA3 but also with an abnormal processing and routing of SP-B and SP-C, leading to severe alterations of surfactant homeostasis and respiratory distress syndrome. To identify infants with hereditary ABCA3 deficiency, we suggest a combined diagnostic approach including immunohistochemical, ultrastructural, and mutation analysis.
Resumo:
Epidemiological studies suggest that hypopituitary patients have an increased risk for cardiovascular mortality. The dyslipidaemia associated with this condition is often characterised by an increase in total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol (LDL-C) and may contribute to these findings. The underlying mechanisms are not fully elucidated.