115 resultados para Chromosomes, Human, Pair 20
Resumo:
The results of a search for pair production of supersymmetric partners of the Standard Model third-generation quarks are reported. This search uses 20.1 fb(-1) of pp collisions at root s = 8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The lightest bottom and top squarks ((b) over tilde (1) and (t) over tilde (1) respectively) are searched for in a final state with large missing transverse momentum and two jets identified as originating from b-quarks. No excess of events above the expected level of Standard Model background is found. The results are used to set upper limits on the visible cross section for processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of the third-generation squarks are derived in phenomenological supersymmetric R-parity-conserving models in which either the bottom or the top squark is the lightest squark. The (b) over tilde (1) is assumed to decay via (b) over tilde (1) -> b (chi) over tilde (0)(1) and the (t) over tilde (1) via (t) over tilde (1) b (chi) over tilde (+/-)(1), with undetectable products of the subsequent decay of the (chi) over tilde (+/-)(1) due to the small mass splitting between the (chi) over tilde (+/-)(1) and the (chi) over tilde (0)(1)
Resumo:
In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.
Resumo:
Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.
Resumo:
In eukaryotic cells, translation of messenger RNA (mRNA) can be initiated either on transcripts associated with the cap-binding complex (CBC; consisting of CBP80 and CBP20) or on transcripts with the eukaryotic translation initiation factor (eIF) 4E bound to the cap. Together with eIF4G and eIF4A, eIF4E forms the eIF4F-complex, which mediates translation initiation during the bulk of cellular protein synthesis. Functionally substituting for eIF4G, the CBP80/20-dependent translation initiation factor (CTIF) has been reported to be part of the CBC-dependent translation initiation complex 1,2. CTIF consists of a N-terminal CBP80-binding domain and a conserved C-terminal MIF4G domain 1. This MIF4G domain has been shown to mediate the interaction between CTIF and different factors such as eIF3g and the stem-loop binding protein (SLBP) 2,3. Here we provide evidence that CTIF, besides its function in translation initiation, is also involved in mRNA translocation from the nucleus to the cytoplasm, possibly through a direct interaction with the nuclear export factor NFX1/TAP. Taken together our results suggest that CTIF can function as a platform that interacts with proteins involved in different steps of the mRNA metabolism.
Resumo:
In eukaryotic cells translation initiation of messenger RNA (mRNA) transcripts can be initiated either by the cap-binding complex (CBC) consisting of CBP80 and CBP20, or by the eukaryotic translation initiation factor (eIF) 4E. Together with eIF4G and eIF4A, eIF4E forms the eIF4F-complex, which mediates initiation of the bulk of cellular translation. Analogous to eIF4G, the CBP80/20-dependent translation initiation factor (CTIF) has been reported to be part of the CBC-dependent translation initiation complex. CTIF consists of a N-terminal CBP80-binding domain and a conserved C-terminal MIF4G domain. This MIF4G domain has been shown to mediate the interaction between CTIF and different factors such as eIF3g and the stem-loop binding protein (SLBP). Here we show data indicating that CTIF, besides its function in translation initiation, is involved in mRNA translocation from the nucleus to the cytoplasm, possibly through a direct interaction with the nuclear export factor NFX1/TAP. Taken together our results suggest that CTIF can function as a platform that interacts with proteins involved in different steps of mRNA metabolism.
Resumo:
Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting.Modern Pathology advance online publication, 12 September 2014; doi:10.1038/modpathol.2014.113.
Resumo:
In eukaryotic cells translation initiation of messenger RNA (mRNA) transcripts can be initiated either by the cap-binding complex (CBC) consisting of CBP80 and CBP20, or by the eukaryotic translation initiation factor (eIF) 4E. Together with eIF4G and eIF4A, eIF4E forms the eIF4F-complex, which mediates translation initiation during the bulk of cellular protein synthesis [1,2]. Functionally analogous to eIF4G, the CBP80/20-dependent translation initiation factor (CTIF) has been reported to be part of the CBC-dependent translation initiation complex [3,4]. CTIF consists of a N-terminal CBP80-binding domain and a conserved C-terminal MIF4G domain [3]. This MIF4G domain has been shown to mediate the interaction between CTIF and different factors such as eIF3g and the stem-loop binding protein (SLBP) [4,5]. Here we show data indicating that CTIF, besides its function in translation initiation, is involved in mRNA translocation from the nucleus to the cytoplasm, possibly through a direct interaction with the nuclear export factor NFX1/TAP. Taken together our results suggest that CTIF can function as a platform that interacts with proteins involved in different steps of the mRNA metabolism. [1] Haghighat A. and Sonenberg N. (1997) JBC 272:21677-21680 [2] Gross J.D. et al. (2003) Cell 115:739-750 [3] Kim K.M. et al. (2009) Genes Dev 23:2033-2045 [4] Choe J. et al. (2012) JBC 287:18500-18509 [5] Choe J. et al. (2013) NAR 41:1307-1318
Resumo:
Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.
Resumo:
Tef Eragrostis tef (Zucc.) Trotter is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n=4x=40), belongs to the Family Poaceae and, together with finger millet (Eleusine coracana Gaertn), to the Subfamily Chloridoideae. It was believed to have originated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding.
Resumo:
The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
Resumo:
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ∼200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ∼40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ∼18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
Progress toward elucidating the 3D structures of eukaryotic membrane proteins has been hampered by the lack of appropriate expression systems. Recent work using the Xenopus oocyte as a novel expression system for structural analysis demonstrates the capability of providing not only the significant amount of protein yields required for structural work but also the expression of eukaryotic membrane proteins in a more native and functional conformation. There is a long history using the oocyte expression system as an efficient tool for membrane transporter and channel expression in direct functional analysis, but improvements in robotic injection systems and protein yield optimization allow the rapid scalability of expressed proteins to be purified and characterized in physiologically relevant structural states. Traditional overexpression systems (yeast, bacteria, and insect cells) by comparison require chaotropic conditions over several steps for extraction, solubilization, and purification. By contrast, overexpressing within the oocyte system for subsequent negative-staining transmission electron microscopy studies provides a single system that can functionally assess and purify eukaryotic membrane proteins in fewer steps maintaining the physiological properties of the membrane protein.
Resumo:
A search is presented for the production of new heavy quarks that decay to a Z boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark (T), the decay targeted is T → Zt, while the decay targeted for a new charge −1/3 quark (B) is B → Zb. The search is performed with a dataset corresponding to 20.3 fb−1 of pp collisions at √ s = 8TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum Z boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a b-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production mediated by the strong interaction, or single production mediated by the electroweak interaction. No significant excess of events above the Standard Model expectation is observed, and lower limits are derived on the mass of vector-like T and B quarks under various branching ratio hypotheses, as well as upper limits on the agnitude of electroweak coupling parameters.
Resumo:
Results of a search for supersymmetry via direct production of third-generation squarks are reported, using 20.3 fb −1 of proton-proton collision data at √s =8 TeV recorded by the ATLAS experiment at the LHC in 2012. Two different analysis strategies based on monojetlike and c -tagged event selections are carried out to optimize the sensitivity for direct top squark-pair production in the decay channel to a charm quark and the lightest neutralino (t 1 →c+χ ˜ 0 1 ) across the top squark–neutralino mass parameter space. No excess above the Standard Model background expectation is observed. The results are interpreted in the context of direct pair production of top squarks and presented in terms of exclusion limits in the m ˜t 1, m ˜ X0 1 ) parameter space. A top squark of mass up to about 240 GeV is excluded at 95% confidence level for arbitrary neutralino masses, within the kinematic boundaries. Top squark masses up to 270 GeV are excluded for a neutralino mass of 200 GeV. In a scenario where the top squark and the lightest neutralino are nearly degenerate in mass, top squark masses up to 260 GeV are excluded. The results from the monojetlike analysis are also interpreted in terms of compressed scenarios for top squark-pair production in the decay channel t ˜ 1 →b+ff ′ +χ ˜ 0 1 and sbottom pair production with b ˜ 1 →b+χ ˜ 0 1 , leading to a similar exclusion for nearly mass-degenerate third-generation squarks and the lightest neutralino. The results in this paper significantly extend previous results at colliders.