82 resultados para Cd4( )
Resumo:
Although porcine circovirus type 2 (PCV2)-associated diseases have been evaluated for known immune evasion strategies, the pathogenicity of these viruses remained concealed for decades. Surprisingly, the same viruses that cause panzootics in livestock are widespread in young, unaffected animals. Recently, evidence has emerged that circovirus-like viruses are also linked to complex diseases in humans, including children. We detected PCV2 genome-carrying cells in fetal pig thymi. To elucidate virus pathogenicity, we developed a new pig infection model by in vivo transfection of recombinant PCV2 and the immunosuppressant cofactor cyclosporine A. Using flow cytometry, immunofluorescence and fluorescence in situ hybridization, we found evidence that PCV2 dictates positive and negative selection of maturing T cells in the thymus. We show for the first time that PCV2-infected cells reside at the corticomedullary junction of the thymus. In diseased animals, we found polyclonal deletion of single positive cells (SPs) that may result from a loss of major histocompatibility complex class-II expression at the corticomedullary junction. The percentage of PCV2 antigen-presenting cells correlated with the degree of viremia and, in turn, the severity of the defect in thymocyte maturation. Moreover, the reversed T-cell receptor/CD4-coreceptor expression dichotomy on thymocytes at the CD4(+)CD8(interm) and CD4SP cell stage is viremia-dependent, resulting in a specific hypo-responsiveness of T-helper cells. We compare our results with the only other better-studied member of Circoviridae, chicken anemia virus. Our data show that PCV2 infection leads to thymocyte selection dysregulation, adding a valuable dimension to our understanding of virus pathogenicity.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
BACKGROUND Ongoing CD4 monitoring in patients on antiretroviral therapy (ART) with viral suppression has been questioned. We evaluated the probability of CD4 decline in children with viral suppression and CD4 recovery after 1 year on ART. METHODS We included children from 8 South African cohorts with routine HIV-RNA monitoring if (1) they were "responders" [HIV-RNA < 400 copies/mL and no severe immunosuppression after ≥1 year on ART (time 0)] and (2) ≥1 HIV-RNA and CD4 measurement within 15 months of time 0. We determined the probability of CD4 decline to World Health Organization-defined severe immunosuppression for 3 years after time 0 if viral suppression was maintained. Follow-up was censored at the earliest of the following dates: the day before first HIV-RNA measurement >400 copies/mL; day before a >15-month gap in testing and date of death, loss to follow-up, transfer out or database closure. RESULTS Among 5984 children [median age at time 0: 5.8 years (interquartile range: 3.1-9.0)], 270 children experienced a single CD4 decline to severe immunosuppression within 3 years of time 0 with probability of 6.6% (95% CI: 5.8-7.4). A subsequent CD4 measurement within 15 months of the first low measurement was available for 63% of children with CD4 decline and 86% showed CD4 recovery. The probability of CD4 decline was lowest (2.8%) in children aged 2 years or older with no or mild immunosuppression and on ART for <18 months at time 0. This group comprised 40% of children. CONCLUSIONS This finding suggests that it may be safe to stop routine CD4 monitoring in children older than 2 years and rely on virologic monitoring alone.
Resumo:
Virus-specific CD4(+) T cells play a major role in viral infections, such as hepatitis C virus (HCV). Viral clearance is associated with vigorous and multi-specific CD4(+) T-cell responses, while chronic infection has been shown to be associated with weak or absent T-cell responses. Most of these studies have used functional assays to analyze virus-specific CD4(+) T-cell responses; however, these and other detection methods have various limitations. Therefore, the important question of whether virus-specific CD4(+) T cells are completely absent or primarily impaired in specific effector functions during chronic infection, has yet to be analyzed in detail. A novel assay, in which virus-specific CD4(+) T-cell frequencies can be determined by de novo CD154 (CD40 ligand) expression in response to viral antigens, can help to overcome some of the limitations of functional assays and restrictions of multimer-based methods. This and other current established methods for the detection of HCV-specific CD4(+) T cells will be discussed in this review.
Resumo:
BACKGROUND Antiretroviral therapy (ART) initiation is now recommended irrespective of CD4 count. However data on the relationship between CD4 count at ART initiation and loss to follow-up (LTFU) are limited and conflicting. METHODS We conducted a cohort analysis including all adults initiating ART (2008-2012) at three public sector sites in South Africa. LTFU was defined as no visit in the 6 months before database closure. The Kaplan-Meier estimator and Cox's proportional hazards models examined the relationship between CD4 count at ART initiation and 24-month LTFU. Final models were adjusted for demographics, year of ART initiation, programme expansion and corrected for unascertained mortality. RESULTS Among 17 038 patients, the median CD4 at initiation increased from 119 (IQR 54-180) in 2008 to 257 (IQR 175-318) in 2012. In unadjusted models, observed LTFU was associated with both CD4 counts <100 cells/μL and CD4 counts ≥300 cells/μL. After adjustment, patients with CD4 counts ≥300 cells/μL were 1.35 (95% CI 1.12 to 1.63) times as likely to be LTFU after 24 months compared to those with a CD4 150-199 cells/μL. This increased risk for patients with CD4 counts ≥300 cells/μL was largest in the first 3 months on treatment. Correction for unascertained deaths attenuated the association between CD4 counts <100 cells/μL and LTFU while the association between CD4 counts ≥300 cells/μL and LTFU persisted. CONCLUSIONS Patients initiating ART at higher CD4 counts may be at increased risk for LTFU. With programmes initiating patients at higher CD4 counts, models of ART delivery need to be reoriented to support long-term retention.
Resumo:
OBJECTIVE To illustrate an approach to compare CD4 cell count and HIV-RNA monitoring strategies in HIV-positive individuals on antiretroviral therapy (ART). DESIGN Prospective studies of HIV-positive individuals in Europe and the USA in the HIV-CAUSAL Collaboration and The Center for AIDS Research Network of Integrated Clinical Systems. METHODS Antiretroviral-naive individuals who initiated ART and became virologically suppressed within 12 months were followed from the date of suppression. We compared 3 CD4 cell count and HIV-RNA monitoring strategies: once every (1) 3 ± 1 months, (2) 6 ± 1 months, and (3) 9-12 ± 1 months. We used inverse-probability weighted models to compare these strategies with respect to clinical, immunologic, and virologic outcomes. RESULTS In 39,029 eligible individuals, there were 265 deaths and 690 AIDS-defining illnesses or deaths. Compared with the 3-month strategy, the mortality hazard ratios (95% CIs) were 0.86 (0.42 to 1.78) for the 6 months and 0.82 (0.46 to 1.47) for the 9-12 month strategy. The respective 18-month risk ratios (95% CIs) of virologic failure (RNA >200) were 0.74 (0.46 to 1.19) and 2.35 (1.56 to 3.54) and 18-month mean CD4 differences (95% CIs) were -5.3 (-18.6 to 7.9) and -31.7 (-52.0 to -11.3). The estimates for the 2-year risk of AIDS-defining illness or death were similar across strategies. CONCLUSIONS Our findings suggest that monitoring frequency of virologically suppressed individuals can be decreased from every 3 months to every 6, 9, or 12 months with respect to clinical outcomes. Because effects of different monitoring strategies could take years to materialize, longer follow-up is needed to fully evaluate this question.
Resumo:
Previous cancer vaccination trials often aimed to activate CD8(+) cytotoxic T-cell (CTL) responses with short (8-10mer) peptides and targeted CD4(+) helper T cells (TH) with HLA class II-binding longer peptides (12-16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We monitored 49 patients and found strong CD8(+) T-cell responses in 63% of the patients. In addition, we unexpectedly found CD4(+) TH cell responses against at least two of the five short peptides in 61% (23/38) of the patients analyzed. The two peptides were recognized by HLA-DP4- and HLA-DR-restricted TH1 cells. Some short peptide-reactive (sp)CD4 T cells showed high functional avidity. Here, we show that a short peptide vaccine is able to activate a specific CD4(+) T-cell repertoire in many patients, facilitating a strong combined CD4(+)/CD8(+) T-cell response. Cancer Immunol Res; 4(1); 18-25. ©2015 AACR.