92 resultados para CYTOCHROME-P450


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human adrenal cortex produces mineralocorticoids, glucocorticoids, and androgens in a species-specific, hormonally regulated, zone-specific, and developmentally characteristic fashion. Most molecular studies of adrenal steroidogenesis use human adrenocortical NCI-H295A and NCI-H295R cells as a model because appropriate animal models do not exist. NCI-H295A and NCI-H295R cells originate from the same adrenocortical carcinoma which produced predominantly androgens but also smaller amounts of mineralocorticoids and glucocorticoids. Research data obtained from either NCI-H295A or NCI-H295R cells are generally compared, although for the same experiments no direct comparison between the two cell lines has been performed. Therefore, we compared the steroid profile and the expression pattern of important genes involved in steroidogenesis in both cell lines. We found that steroidogenesis differs profoundly. NCI-H295A cells produce more mineralocorticoids, whereas NCI-H295R cells produce more androgens. Expression of the 3beta-hydroxysteroid dehydrogenase (HSD3B2), cytochrome b5, and sulfonyltransferase genes is higher in NCI-H295A cells, whereas expression of the cytochrome P450c17 (CYP17), 21-hydroxylase (CYP21), and P450 oxidoreductase genes does not differ between the cell lines. We found lower 3beta-hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase activity in NCI-H295R cells explaining the 'androgenic' steroid profile for these cells and resembling the zona reticularis of the human adrenal cortex. Both cell lines were found to express the ACTH receptor at low levels consistent with low stimulation by ACTH. By contrast, both cell lines were readily stimulated by 8Br-cAMP. The angiotensin type 1 receptor was highly expressed in NCI-H295R than NCI-H295A cells and angiotensin II stimulated steroidogenesis in NCI-H295R but not NCI-H295A cells. Our data suggest that comparative studies between NCI-H295A and NCI-H295R cells may help find important regulators of mineralocorticoid or androgen biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with adrenal insufficiency, genital anomalies and bony malformations resembling the Antley- Bixler syndrome (a craniosynostosis syndrome), are likely to have P450 oxidoreductase (POR) deficiency. Since our first report in 2004, about 26 recessive POR mutations have been identified in 50 patients. POR is the obligate electron donor to all microsomal (type II) P450 enzymes, including the steroidogenic enzymes CYP17A1, CYP21A2 and CYP19A1. POR deficiency may cause disordered sexual development manifested as genital undervirilization in 46,XY newborns as well as overvirilization in those who are 46,XX. This may be explained by impaired aromatization of fetal androgens which may also lead to maternal virilization and low urinary estriol levels during pregnancy. A role for the alternate 'backdoor' pathway of androgen biosynthesis, leading to dihydrotestosterone production bypassing androstenedione and testosterone, has been suggested in POR deficiency but remains unclear. POR variants may play an important role in drug metabolism, as most drugs are metabolized by hepatic microsomal P450 enzymes. However, functional assays studying the effects of specific POR mutations on steroidogenesis showed that several POR variants impaired CYP17A1, CYP21A2 and CYP19A1 activities to different degrees, indicating that each POR variant must be studied separately for each potential target P450 enzyme. Thus, the impact of POR mutations on drug metabolism by hepatic P450s requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation, and thus contaminating many industrial effluents and rivers. In the development of a phytotreatment to remove sulphonated aromatic compounds, rhubarb (Rheum rhaponticum), a plant producing natural anthraquinones, as well as maize (Zea mays) and celery (Apium graveolens), plants not producing anthraquinones, were tested for their ability to metabolise these xenobiotics. Plants were cultivated under hydroponic conditions, with or without sulphonated anthraquinones, and were harvested at different times. Either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 towards several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results indicated that the activity of cytochromes P450 and peroxidases significantly increased in rhubarb plants cultivated in the presence of sulphonated anthraquinones. A higher activity of cytochromes P450 was also detected in maize and celery exposed to the pollutants. In these two plants, a peroxidase activity was also detected, but without a clear difference between the control plants and the plants exposed to the organic contaminants. This research demonstrated the existence in rhubarb, maize and celery of biochemical mechanisms involved in the metabolism and detoxification of sulphonated anthraquinones. Taken together, results confirmed that rhubarb might be the most appropriate plant for the phytotreatment of these organic pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crown-capped iron(S−) porphyrins 1·H2O and 2·H2O and their corresponding Ba2+ complexes have been prepared as active site analogues of the resting state of cytochrome P450cam. cw-EPR studies and electronic structure calculations at the density functional theory (DFT) level of model systems suggest a functional role of the water cluster of P450cam.