173 resultados para CT, Radiation Dose, Image Quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the application of full-body radiography to nontraumatic emergency situations. The Lodox Statscan is an X-ray machine capable of imaging the entire body in 13 seconds using linear slit scanning radiography (LSSR). Nontraumatic emergency applications in ventriculoperitoneal (VP) shunt visualisation, emergency room arteriography (ERA), detection of foreign bodies, and paediatric emergency imaging are presented. Reports show that the fast, full-body, and low-dose scanning capabilities of the Lodox system make it well suited to these applications, with the same or better image quality, faster processing times, and lower dose to patients. In particular, the large format scans allowing visualisation of a greater area of anatomy make it well suited to VP shunt monitoring, ERA, and the detection of foreign bodies. Whilst more studies are required, it can be concluded that the Lodox Statscan has the potential for widespread use in these and other nontraumatic emergency radiology applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare diagnostic accuracy of multi-station, high-spatial resolution contrast-enhanced MR angiography (CE-MRA) of the lower extremities with digital subtraction angiography (DSA) as the reference standard in patients with symptomatic peripheral arterial occlusive disease. MATERIALS AND METHODS: Of 485 consecutive patients undergoing a run-off CE-MRA, 152 patients (86 male, 66 female; mean age, 71.6 years) with suspected peripheral arterial occlusive disease were included into our Institutional Review Board approved study. All patients underwent MRA and DSA of the lower extremities within 30 days. MRA was performed at 1.5 Tesla with a single bolus of 0.1 mmol/kg body weight of gadobutrol administered at a rate of 2.0 mL/s at three stations. Two readers evaluated the MRA images independently for stenosis grade and image quality. Sensitivity and specificity were derived. RESULTS: Sensitivity and specificity ranged from 73% to 93% and 64% to 89% and were highest in the thigh area. Both readers showed comparable results. Evaluation of good and better quality MRAs resulted in a considerable improvement in diagnostic accuracy. CONCLUSION: Contrast-enhanced MRA demonstrates good sensitivity and specificity in the investigation of the vasculature of the lower extremities. While a minor investigator experience dependence remains, it is standardizable and shows good inter-observer agreement. Our results confirm that the administration of Gadobutrol at a standard dose of 0.1 mmol/kg for contrast-enhanced runoff MRA is able to detect hemodynamically relevant stenoses. Use of contrast-enhanced MRA as an alternative to intra-arterial DSA in the evaluation and therapeutic planning of patients with suspected peripheral arterial occlusive disease is well justified. J. Magn. Reson. Imaging 2013;37:1427-1435. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE:Conventional platinum coils cause imaging artifacts that reduce imaging quality and therefore impair imaging interpretation on intraprocedural or noninvasive follow-up imaging. The purpose of this study was to evaluate imaging characteristics and artifact production of polymeric coils compared with standard platinum coils in vitro and in vivo.MATERIALS AND METHODS:Polymeric coils and standard platinum coils were evaluated in vitro with the use of 2 identical silicon aneurysm models coiled with a packing attenuation of 20% each. DSA, flat panel CT, CT, and MR imaging were performed. In vivo evaluation of imaging characteristics of polymeric coils was performed in experimentally created rabbit carotid bifurcation aneurysms. DSA, CT/CTA, and MR imaging were performed after endovascular treatment of the aneurysms. Images were evaluated regarding visibility of individual coils, coil mass, artifact production, and visibility of residual flow within the aneurysm.RESULTS:Overall, in vitro and in vivo imaging showed relevantly reduced artifact production of polymeric coils in all imaging modalities compared with standard platinum coils. Image quality of CT and MR imaging was improved with the use of polymeric coils, which permitted enhanced depiction of individual coil loops and residual aneurysm lumen as well as the peri-aneurysmal area. Remarkably, CT images demonstrated considerably improved image quality with only minor artifacts compared with standard coils. On DSA, polymeric coils showed transparency and allowed visualization of superimposed vessel structures.CONCLUSIONS:This initial experimental study showed improved imaging quality with the use of polymeric coils compared with standard platinum coils in all imaging modalities. This might be advantageous for improved intraprocedural imaging for the detection of complications and posttreatment noninvasive follow-up imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate a triphasic injection protocol for whole-body multidetector computed tomography (MDCT) in patients with multiple trauma. Fifty consecutive patients (41 men) were examined. Contrast medium (300 mg/mL iodine) was injected starting with 70 mL at 3 mL/s, followed by 0.1 mL/s for 8 s, and by another bolus of 75 mL at 4 mL/s. CT data acquisition started 50 s after the beginning of the first injection. Two experienced, blinded readers independently measured the density in all major arteries, veins, and parenchymatous organs. Image quality was assessed using a five-point ordinal rating scale and compared to standard injection protocols [n = 25 each for late arterial chest, portovenous abdomen, and MDCT angiography (CTA)]. With the exception of the infrarenal inferior caval vein, all blood vessels were depicted with diagnostic image quality using the multiple-trauma protocol. Arterial luminal density was slightly but significantly smaller compared to CTA (P < 0.01). Veins and parenchymatous organs were opacified significantly better compared to all other protocols (P < 0.01). Arm artifacts reduced the density of spleen and liver parenchyma significantly (P < 0.01). Similarly high image quality is achieved for arteries using the multiple-trauma protocol compared to CTA, and parenchymatous organs are depicted with better image quality compared to specialized protocols. Arm artifacts should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The purpose of this study was to determine the dose profile of the Cranex Tome radiography unit and compare it with that of the Scanora machine.Study design. The radiation dose delivered by the Cranex Tome radiography unit during the cross-sectional mode was determined. Single tooth gaps in regions 3 (16) and 30 (46) were simulated. Dosimetry was carried out with 2 phantoms, a head and neck phantom and a full-body phantom loaded with 142 thermoluminescent dosimeters (TLD) and 280 TLD, respectively; all locations corresponded to radiosensitive organs or tissues. The recorded local mean organ doses were compared with those measured in another study evaluating the Scanora machine.Results. Generally, dose values from the Cranex Tome radiography unit reached only 50% to 60% of the values measured for the Scanora machine. The effective dose was calculated as 0.061 mSv and 0.04 mSv for tooth regions 3 (16) and 30 (46), respectively. Corresponding values for the Scanora machine were 0.117 mSv and 0.084 mSv.Conclusion. Cross-sectional imaging in the molar region of the upper and the lower jaw can be performed with the Cranex Tome unit, which delivers only approximately half of the dose that the Scanora machine delivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, dose measurements have been conducted following examination of the maxilla and mandible with spiral computed tomography (CT). The measurements were carried out with 2 phantoms, a head and neck phantom and a full body phantom. The analysis of applied thermoluminescent dosimeters yielded radiation doses for organs and tissues in the head and neck region between 0.6 and 16.7 mGy when 40 axial slices and 120 kV/165 mAs were used as exposure parameters. The effective dose was calculated as 0.58 and 0.48 mSv in the maxilla and mandible, respectively. Tested methods for dose reduction showed a significant decrease of radiation dose from 40 to 65%. Based on these results, the mortality risk was estimated according to calculation models recommended by the Committee on the Biological Effects of Ionizing Radiations and by the International Commission on Radiological Protection. Both models resulted in similar values. The mortality risk ranges from 46.2 x 10.6 for 20-year-old men to 11.2 x 10(-6) for 65-year-old women. Using 2 methods of dose reduction, the mortality risk decreased by approximately 50 to 60% to 19.1 x 10(-6) for 20-year-old men and 5.5 x 10(-6) for 65-year-old women. It can be concluded that a CT scan of the maxillofacial complex causes a considerable radiation dose when compared with conventional radiographic examinations. Therefore, a careful indication for this imaging technique and dose reduction methods should be considered in daily practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cone-Beam Computed Tomography (CBCT) has been introduced in 1998. This radiological imaging procedure has been provided for dentistry and is comparable to computed tomography (CT) in medicine. It is expected that CBCT will have the same success in dental diagnostic imaging as computed tomography had in medicine. Just as CT is responsible for a significant rise in radiation dose to the population from medical X-ray diagnostics, CBCT studies will be accompanied by a significant increase of the dose to our patients by dentistry. Because of the growing concern for an uncritical and consequently rapidly increasing use of CBCT the Swiss Society of Dentomaxillofacial Radiology convened a first consensus conference in 2011 to formulate indications for CBCT, which can be used as guidelines. In this meeting, oral and maxillofacial surgery, orthodontics and temporomandibular joint disorders and diseases were treated and the most important and most experienced users of DVT in these areas were asked to participate. In general, a highly restrictive use of CBCT is required. Justifying main criterion for CBCT application is that additional, therapy-relevant information is expected that should lead to a significant benefit in patient care. All users of CBCT should have completed a structured, high-level training, just like that offered by the Swiss Society of Dentomaxillofacial Radiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the issue of fully automatic segmentation of a hip CT image with the goal to preserve the joint structure for clinical applications in hip disease diagnosis and treatment. For this purpose, we propose a Multi-Atlas Segmentation Constrained Graph (MASCG) method. The MASCG method uses multi-atlas based mesh fusion results to initialize a bone sheetness based multi-label graph cut for an accurate hip CT segmentation which has the inherent advantage of automatic separation of the pelvic region from the bilateral proximal femoral regions. We then introduce a graph cut constrained graph search algorithm to further improve the segmentation accuracy around the bilateral hip joint regions. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 15-fold cross validation. When the present approach was compared to manual segmentation, an average surface distance error of 0.30 mm, 0.29 mm, and 0.30 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. A further look at the bilateral hip joint regions demonstrated an average surface distance error of 0.16 mm, 0.21 mm and 0.20 mm for the acetabulum, the left femoral head, and the right femoral head, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to investigate the performance of the arterial enhancement fraction (AEF) in multiphasic computed tomography (CT) acquisitions to detect hepatocellular carcinoma (HCC) in liver transplant recipients in correlation with the pathologic analysis of the corresponding liver explants. MATERIALS AND METHODS Fifty-five transplant recipients were analyzed: 35 patients with 108 histologically proven HCC lesions and 20 patients with end-stage liver disease without HCC. Six radiologists looked at the triphasic CT acquisitions with the AEF maps in a first readout. For the second readout without the AEF maps, 3 radiologists analyzed triphasic CT acquisitions (group 1), whereas the other 3 readers had 4 contrast acquisitions available (group 2). A jackknife free-response reader receiver operating characteristic analysis was used to compare the readout performance of the readers. Receiver operating characteristic analysis was used to determine the optimal cutoff value of the AEF. RESULTS The figure of merit (θ = 0.6935) for the conventional triphasic readout was significantly inferior compared with the triphasic readout with additional use of the AEF (θ = 0.7478, P < 0.0001) in group 1. There was no significant difference between the fourphasic conventional readout (θ = 0.7569) and the triphasic readout (θ = 0.7615, P = 0.7541) with the AEF in group 2. Without the AEF, HCC lesions were detected with a sensitivity of 30.7% (95% confidence interval [CI], 25.5%-36.4%) and a specificity of 97.1% (96.0%-98.0%) by group 1 looking at 3 CT acquisition phases and with a sensitivity of 42.1% (36.2%-48.1%) and a specificity of 97.5% (96.4%-98.3%) in group 2 looking at 4 CT acquisition phases. Using the AEF maps, both groups looking at the same 3 acquisition phases, the sensitivity was 47.7% (95% CI, 41.9%-53.5%) with a specificity of 97.4% (96.4%-98.3%) in group 1 and 49.8% (95% CI, 43.9%-55.8%)/97.6% (96.6%-98.4%) in group 2. The optimal cutoff for the AEF was 50%. CONCLUSION The AEF is a helpful tool to screen for HCC with CT. The use of the AEF maps may significantly improve HCC detection, which allows omitting the fourth CT acquisition phase and thus making a 25% reduction of radiation dose possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Newly diagnosed WHO grade II-III or any WHO grade recurrent meningioma exhibit an aggressive behavior and thus are considered as high- or intermediate risk tumors. Given the unsatisfactory rates of disease control and survival after primary or adjuvant radiation therapy, optimization of treatment strategies is needed. We investigated the potential of dose-painting intensity-modulated proton beam-therapy (IMPT) for intermediate- and high-risk meningioma. MATERIAL AND METHODS Imaging data from five patients undergoing proton beam-therapy were used. The dose-painting target was defined using [68]Ga-[1,4,7,10-tetraazacyclododecane tetraacetic acid]- d-Phe(1),Tyr(3)-octreotate ([68]Ga-DOTATATE)-positron emission tomography (PET) in target delineation. IMPT and photon intensity-modulated radiation therapy (IMRT) treatment plans were generated for each patient using an in-house developed treatment planning system (TPS) supporting spot-scanning technology and a commercial TPS, respectively. Doses of 66 Gy (2.2 Gy/fraction) and 54 Gy (1.8 Gy/fraction) were prescribed to the PET-based planning target volume (PTVPET) and the union of PET- and anatomical imaging-based PTV, respectively, in 30 fractions, using simultaneous integrated boost. RESULTS Dose coverage of the PTVsPET was equally good or slightly better in IMPT plans: dose inhomogeneity was 10 ± 3% in the IMPT plans vs. 13 ± 1% in the IMRT plans (p = 0.33). The brain Dmean and brainstem D50 were small in the IMPT plans: 26.5 ± 1.5 Gy(RBE) and 0.002 ± 0.0 Gy(RBE), respectively, vs. 29.5 ± 1.5 Gy (p = 0.001) and 7.5 ± 11.1 Gy (p = 0.02) for the IMRT plans, respectively. The doses delivered to the optic structures were also decreased with IMPT. CONCLUSIONS Dose-painting IMPT is technically feasible using currently available planning tools and resulted in dose conformity of the dose-painted target comparable to IMRT with a significant reduction of radiation dose delivered to the brain, brainstem and optic apparatus. Dose escalation with IMPT may improve tumor control and decrease radiation-induced toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures.