80 resultados para Buildings -- Repair and reconstruction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hundreds of genetic variants in SCN5A, the gene coding for the pore-forming subunit of the cardiac sodium channel, Na(v) 1.5, have been described in patients with cardiac channelopathies as well as in individuals from control cohorts. The aim of this study was to characterize the biophysical properties of 2 naturally occurring Na(v) 1.5 variants, p.R689H and p.R689C, found in patients with cardiac arrhythmias and in control individuals. In addition, this study was motivated by the finding of the variant p.R689H in a family with sudden cardiac death (SCD) in children. When expressed in HEK293 cells, most of the sodium current (I(Na)) biophysical properties of both variants were indistinguishable from the wild-type (WT) channels. In both cases, however, an ∼2-fold increase of the tetrodotoxin-sensitive late I(Na) was observed. Action potential simulations and reconstruction of pseudo-ECGs demonstrated that such a subtle increase in the late I(Na) may prolong the QT interval in a nonlinear fashion. In conclusion, despite the fact that the causality link between p.R689H and the phenotype of the studied family cannot be demonstrated, this study supports the notion that subtle alterations of Na(v) 1.5 variants may increase the risk for cardiac arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rockfall is a widespread and hazardous process in mountain environments, but data on past events are only rarely available. Growth-ring series from trees impacted by rockfall were successfully used in the past to overcome the lack of archival records. Dendrogeomorphic techniques have been demonstrated to allow very accurate dating and reconstruction of spatial and temporal rockfall activity, but the approach has been cited to be labor intensive and time consuming. In this study, we present a simplified method to quantify rockfall processes on forested slopes requiring less time and efforts. The approach is based on a counting of visible scars on the stem surface of Common beech (Fagus sylvatica L.). Data are presented from a site in the Inn valley (Austria), where rocks are frequently detached from an ~ 200-m-high, south-facing limestone cliff. We compare results obtained from (i) the “classical” analysis of growth disturbances in the tree-ring series of 33 Norway spruces (Picea abies (L.) Karst.) and (ii) data obtained with a scar count on the stem surface of 50 F. sylvatica trees. A total of 277 rockfall events since A.D. 1819 could be reconstructed from tree-ring records of P. abies, whereas 1140 scars were observed on the stem surface of F. sylvatica. Absolute numbers of rockfalls (and hence return intervals) vary significantly between the approaches, and the mean number of rockfalls observed on the stem surface of F. sylvatica exceeds that of P. abies by a factor of 2.7. On the other hand, both methods yield comparable data on the spatial distribution of relative rockfall activity. Differences may be explained by a great portion of masked scars in P. abies and the conservation of signs of impacts on the stem of F. sylvatica. Besides, data indicate that several scars on the bark of F. sylvatica may stem from the same impact and thus lead to an overestimation of rockfall activity.