150 resultados para Blood-vessels Surgery
Resumo:
Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
Resumo:
Cutaneous collagenous vasculopathy (CCV) is a rare idiopathic microangiopathy of the cutaneous vasculature characterized histologically by the presence of dilated small blood vessels with flat endothelial cells and thickened walls containing hyaline material in the upper dermis. We report an elderly patient presenting with an extensive form of CCV involving the trunk, upper and lower limbs. She was treated with Multiplex PDL 595-nm/Nd:YAG 1,064-nm laser and optimized pulsed light. This approach, which has never been reported for CCV so far, resulted in a striking and almost complete clearance of the widespread lesions. We here review our knowledge about CCV and therapeutic options available with a survey of the literature.
Resumo:
When lung development is not interrupted by premature birth and unaffected by genetic or environmental disturbances, all components develop with complex control to form a functional organ with a predictable timeline during fetal development. In this chapter we describe the relationship between morphological development and function in both physiological and pathological conditions in human lung development. Tree-like growth of the lung begins during the first few weeks postconception, with the embryonic stage characterized by branching morphogenesis in both the airways and blood vessels, separately in the left and right lung buds, which appear near day 26 postcoitus (p.c.). Branching continues through the embryonic stage, with proliferation of mesenchymal and epithelial cells and apoptosis near branch points and in the areas of new formation. The pseudoglandular stage (weeks 5–17 p.c.) is characterized by accelerated cellular proliferation and airway and vascular branching, with epithelial differentiation in proximal and distal airways. Further epithelial differentiation, angiogenesis of the parenchymal capillary network, and the first formation of the air–blood barrier characterize the canalicular stage (16–26 weeks p.c.), just before the completion of branching morphogenesis (saccular stage, weeks 24–38 p.c.) and the start of alveolarization (week 36 through adolescence).
Resumo:
The anatomy of the domestic duck lung was studied macroscopically, by casting and by light, transmission, and scanning electron microscopy. The lung had four categories of secondary bronchi (SB), namely, the medioventral (MV, 4-5), laterodorsal (LD, 6-10), lateroventral (LV, 2-4), and posterior secondary bronchi (PO, 36-44). The neopulmonic parabronchi formed an intricate feltwork on the ventral third of the lung and inosculated those from the other SB. The lung parenchyma was organized into cylindrical parabronchi separated by thin septa containing blood vessels. Atria were shallow and well-fortified by epithelial ridges reinforced by smooth muscle bundles and gave rise to 2-6 elongate infundibulae. Air capillaries arose either directly from the atria or from infundibulae and were tubular or globular in shape with thin interconnecting branches. The newly described spatial disposition of the conducting air conduits closely resembles that of the chicken. This remarkable similarity between the categories, numbers, and 3D arrangement of the SB in the duck and chicken points to a convergence in function-oriented design. To illuminate airflow dynamics in the avian lung, precise directions of airflow in the various categories of SB and parabronchi need to be characterized.
Resumo:
The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen. Parasites simultaneously inhibit the exposure of phosphatidylserine on the outer leaflet of host plasma membranes, which act as "eat me" signals to phagocytes. Thus, the hepatocyte-derived merosomes appear to ensure both the migration of parasites into the bloodstream and their protection from host immunity.
Resumo:
The generation of rodent Plasmodium strains expressing fluorescent proteins in all life cycle stages has had a big impact on malaria research. With this tool in hand, for the first time it was possible to follow in real time by in vivo microscopy the infection route of Plasmodium sporozoites transmitted to the mammalian host by Anopheles mosquitoes. Recently, this work has been extended to the analysis of both hepatocyte infection by Plasmodium sporozoites, as well as liver merozoite transport into blood vessels. The stunning results of these studies have considerably changed our understanding of hepatocyte invasion and parasite liberation. Here, we describe the most important findings of the last years and in addition, we elaborate on the molecular events during the intracellular development of Plasmodium exoerythrocytic forms that give rise to erythrocyte infecting merozoites.
Resumo:
Vasopressors, such as norepinephrine, are frequently used to treat perioperative hypotension. Increasing perfusion pressure with norepinephrine may increase blood flow in regions at risk. However, the resulting vasoconstriction could deteriorate microcirculatory blood flow in the intestinal tract and kidneys. This animal study was designed to investigate the effects of treating perioperative hypotension with norepinephrine during laparotomy with low fluid volume replacement.
Resumo:
We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.
Resumo:
OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.
Resumo:
BACKGROUND: In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. METHODS: The authors studied 13 healthy patients scheduled to undergo minor lumbar and cervical spine surgery. After induction with propofol, alfentanil, and mivacurium and tracheal intubation, isoflurane was titrated to maintain the Bispectral Index at 55 (+/- 5), and the alfentanil administration was switched from manual to closed-loop control. The controller adjusted the alfentanil infusion rate to maintain the mean arterial blood pressure near the set-point (70 mmHg) while minimizing the Cp Alf toward the set-point plasma alfentanil concentration (Cp Alfref) (100 ng/ml). RESULTS: Two patients were excluded because of loss of arterial pressure signal and protocol violation. The alfentanil infusion was closed-loop controlled for a mean (SD) of 98.9 (1.5)% of presurgery time and 95.5 (4.3)% of surgery time. The mean (SD) end-tidal isoflurane concentrations were 0.78 (0.1) and 0.86 (0.1) vol%, the Cp Alf values were 122 (35) and 181 (58) ng/ml, and the Bispectral Index values were 51 (9) and 52 (4) before surgery and during surgery, respectively. The mean (SD) absolute deviations of mean arterial blood pressure were 7.6 (2.6) and 10.0 (4.2) mmHg (P = 0.262), and the median performance error, median absolute performance error, and wobble were 4.2 (6.2) and 8.8 (9.4)% (P = 0.002), 7.9 (3.8) and 11.8 (6.3)% (P = 0.129), and 14.5 (8.4) and 5.7 (1.2)% (P = 0.002) before surgery and during surgery, respectively. A post hoc simulation showed that the Cp Alfref decreased the predicted Cp Alf compared with mean arterial blood pressure alone. CONCLUSION: The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.
Resumo:
The aim of all efforts to reduce the need of allogeneic blood transfusions is to avoid associated risks. There should particularly be a favourable effect according to the rate of transfusion-transmitted virus infections and immunological side-effects. The acceptance of an individually adjusted lowest haematocrit level and the minimisation of intra-operative blood loss by the application of optimal surgical techniques are among the most essential strategies to reduce or even avoid allogeneic blood transfusions. In addition the following interventions are generally accepted: Preoperative autologous blood donation, where appropriate supported by erythropoietin Preoperative haemodilution, where appropriate supported by erythropoietin Intra- and postoperative blood salvage Topical or systemic pharmacologic interventions to accelerate haemostasis Controlled hypotension Efficacy and indication of the different measures always depend on the individual circumstances of the specific patient. Therefore one should develop an individual approach for every case. In this context the most important subjects are an optimal coordination and if required an appropriate combination of the discussed methods. Algorithms which preoperatively allow approximate calculation of expected transfusion need may be a meaningful tool to facilitate blood conservation planning. However, at the same time one must consider that all strategies to reduce allogeneic transfusion needs are also associated with particular risks. Therefore one has to weigh carefully the pros and cons prior to their application, including the possible alternative of allogeneic transfusion in one's decision making process.
Resumo:
Carotid sinus baroreceptors are involved in controlling blood pressure (BP) by providing input to the cardiovascular regulatory centers of the medulla. The acute effect of temporarily placing an electrode on the carotid sinus wall to electrically activate the baroreflex was investigated. We studied 11 patients undergoing elective carotid surgery. Baseline BP was 146+30/66+/-17 mm Hg and heart rate (HR) 72+/-7 bpm (mean +/- standard deviation). An electrode was placed upon the carotid sinus and after obtaining a steady state baseline of BP and HR, an electric current was applied and increased in 1-volt increments. A voltage dependent and highly significant reduction in BP was observed which averaged 18+/-26* and 8.0+/-12 mm Hg for systolic BP and diastolic BP, respectively. Maximal reductions occurred at 4.4+/-1.2 V: 23+/-24 mm Hg*, 16+/-10 mm Hg* and 7+/-12 bpm* for systolic BP, diastolic BP and HR, respectively ( = p <.05). Thus, electrical stimulation of the carotid sinus activates the carotid baroreflex resulting in a reduction in BP and HR. This presents a proof of concept for device based baroreflex modulation in acute BP regulation and adds to the available data which provide a rationale for evaluating this system in the context of chronic BP reduction in hypertensive patients.
Resumo:
OBJECTIVE: Perforating arteries are commonly involved during the surgical dissection and clipping of intracranial aneurysms. Occlusion of perforating arteries is responsible for ischemic infarction and poor outcome. The goal of this study is to describe the usefulness of near-infrared indocyanine green videoangiography (ICGA) for the intraoperative assessment of blood flow in perforating arteries that are visible in the surgical field during clipping of intracranial aneurysms. In addition, we analyzed the incidence of perforating vessels involved during the aneurysm surgery and the incidence of ischemic infarct caused by compromised small arteries. METHODS: Sixty patients with 64 aneurysms were surgically treated and prospectively included in this study. Intraoperative ICGA was performed using a surgical microscope (Carl Zeiss Co., Oberkochen, Germany) with integrated ICGA technology. The presence and involvement of perforating arteries were analyzed in the microsurgical field during surgical dissection and clip application. Assessment of vascular patency after clipping was also investigated. Only those small arteries that were not visible on preoperative digital subtraction angiography were considered for analysis. RESULTS: The ICGA was able to visualize flow in all patients in whom perforating vessels were found in the microscope field. Among 36 patients whose perforating vessels were visible on ICGA, 11 (30%) presented a close relation between the aneurysm and perforating arteries. In one (9%) of these 11 patients, ICGA showed occlusion of a P1 perforating artery after clip application, which led to immediate correction of the clip confirmed by immediate reestablishment of flow visible with ICGA without clinical consequences. Four patients (6.7%) presented with postoperative perforating artery infarct, three of whom had perforating arteries that were not visible or distant from the aneurysm. CONCLUSION: The involvement of perforating arteries during clip application for aneurysm occlusion is a usual finding. Intraoperative ICGA may provide visual information with regard to the patency of these small vessels.
Resumo:
BACKGROUND Antifibrinolytics have been used for 2 decades to reduce bleeding in cardiac surgery. MDCO-2010 is a novel, synthetic, serine protease inhibitor. We describe the first experience with this drug in patients. METHODS In this phase II, double-blind, placebo-controlled study, 32 patients undergoing isolated primary coronary artery bypass grafting with cardiopulmonary bypass were randomly assigned to 1 of 5 increasing dosage groups of MDCO-2010. The primary aim was to evaluate pharmacokinetics (PK) with assessment of plasmatic concentrations of the drug, short-term safety, and tolerance of MDCO-2010. Secondary end points were influence on coagulation, chest tube drainage, and transfusion requirements. RESULTS PK analysis showed linear dosage-proportional correlation between MDCO-2010 infusion rate and PK parameters. Blood loss was significantly reduced in the 3 highest dosage groups compared with control (P = 0.002, 0.004 and 0.011, respectively). The incidence of allogeneic blood product transfusions was lower with MDCO-2010 4/24 (17%) vs 4/8 (50%) in the control group. MDCO-2010 exhibited dosage-dependent antifibrinolytic effects through suppression of D-dimer generation and inhibition of tissue plasminogen activator-induced lysis in ROTEM analysis as well as anticoagulant effects demonstrated by prolongation of activated clotting time and activated partial thromboplastin time. No systematic differences in markers of end organ function were observed among treatment groups. Three patients in the MDCO-2010 groups experienced serious adverse events. One patient experienced intraoperative thrombosis of venous grafts considered possibly related to the study drug. No reexploration for mediastinal bleeding was required, and there were no deaths. CONCLUSIONS This first-in-patient study demonstrated dosage-proportional PK for MDCO-2010 and reduction of chest tube drainage and transfusions in patients undergoing primary coronary artery bypass grafting. Antifibrinolytic and anticoagulant effects were demonstrated using various markers of coagulation. MDCO-2010 was well tolerated and showed an acceptable initial safety profile. Larger multi-institutional studies are warranted to further investigate the safety and efficacy of this compound.
Resumo:
Perioperative metabolic changes in cardiac surgical patients are not only induced by tissue injury and extracorporeal circulation per se: the systemic inflammatory response to surgical trauma and extracorporeal circulation, perioperative hypothermia, cardiovascular and neuroendocrine responses, and drugs and blood products used to maintain cardiovascular function and anesthesia contribute to varying degrees. The pathophysiologic changes include increased oxygen consumption and energy expenditure; increased secretion of adrenocorticotrophic hormone, cortisol, epinephrine, norepinephrine, insulin, and growth hormone; and decreased total tri-iodothyronine levels. Easily measurable metabolic consequences of these changes include hyperglycemia, hyperlactatemia, increased aspartate, glutamate and free fatty acid concentrations, hypokalemia, increased production of inflammatory cytokines, and increased consumption of complement and adhesion molecules. Nutritional risk before elective cardiac surgery-defined as preoperative unintended pathologic weight loss/low amount of food intake in the preceding week or low body mass index-is related to adverse postoperative outcome. Improvements in surgical techniques, anesthesia, and perioperative management have been designed to minimize the stressful stimulus to catabolism, thereby slowing the wasting process to the point where much less nutrition is required to meet metabolic requirements. Early nutrition in cardiac surgery is safe and well tolerated.