181 resultados para Biology, Molecular|Biology, Animal Physiology|Health Sciences, Oncology
Resumo:
PURPOSE Validity of the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging systems for gastric cancer has been evaluated in several studies, mostly in Asian patient populations. Only few data are available on the prognostic implications of the new classification system on a Western population. Therefore, we investigated its prognostic ability based on a German patient cohort. PATIENTS AND METHODS Data from a single-center cohort of 1,767 consecutive patients surgically treated for gastric cancer were classified according to the seventh edition and were compared using the previous TNM/UICC classification. Kaplan-Meier analyses were performed for all TNM stages and UICC stages in a comparative manner. Additional survival receiver operating characteristic analyses and bootstrap-based goodness-of-fit comparisons via Bayesian information criterion (BIC) were performed to assess and compare prognostic performance of the competing classification systems. RESULTS We identified the UICC pT/pN stages according to the seventh edition of the AJCC/UICC guidelines as well as resection status, age, Lauren histotype, lymph-node ratio, and tumor grade as independent prognostic factors in gastric cancer, which is consistent with data from previous Asian studies. Overall survival rates according to the new edition were significantly different for each individual's pT, pN, and UICC stage. However, BIC analysis revealed that, owing to higher complexity, the new staging system might not significantly alter predictability for overall survival compared with the old system within the analyzed cohort from a statistical point of view. CONCLUSION The seventh edition of the AJCC/UICC classification was found to be valid with distinctive prognosis for each stage. However, the AJCC/UICC classification has become more complex without improving predictability for overall survival in a Western population. Therefore, simplification with better predictability of overall survival of patients with gastric cancer should be considered when revising the seventh edition.
Resumo:
BACKGROUND This study evaluates the geographic expression pattern of Raf-1 Kinase Inhibitor Protein (RKIP) in colorectal cancer (CRC) in correlation with clinicopathological and molecular features, markers of epithelial-mesenchymal transition (EMT) and survival outcome. METHODS Whole-tissue sections of 220 well-characterised CRCs were immunostained for RKIP. NF-κB and E-Cadherin expression was assessed using a matched multi-punch tissue microarray. Analysis of mismatch repair (MMR) protein expression, B-Raf and KRAS mutations was performed. RKIP expression in normal mucosa, tumour centre, invasion front and tumour buds was each assessed for clinical relevance. RESULTS RKIP was diffusely expressed in normal mucosa and progressively lost towards tumour centre and front (P<0.0001). Only 0.9% of tumour buds were RKIP-positive. In the tumour centre, RKIP deficiency predicted metastatic disease (P=0.0307), vascular invasion (P=0.0506), tumour budding (P=0.0112) and an invasive border configuration (P=0.0084). Loss of RKIP correlated with NF-κB activation (P=0.0002) and loss of E-Cadherin (P<0.0001). Absence of RKIP was more common in MMR-deficient cancers (P=0.0191), while no impact of KRAS and B-Raf mutation was observed. RKIP in the tumour centre was identified as a strong prognostic indicator (HR (95% CI): 2.13 (1.27-3.56); P=0.0042) independently of TNM classification and therapy (P=0.0474). CONCLUSION The clinical relevance of RKIP expression as an independent prognostic factor is restricted to the tumour centre. Loss of RKIP predicts features of EMT and correlates with frequent distant metastasis.
Resumo:
Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E) /CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E) , CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.
Resumo:
BACKGROUND Botulinum toxin (BTX) A and B are commonly used for aesthetic indications and in neuromuscular disorders. New concepts seek to prove efficacy of BTX for critical tissue perfusion. Our aim was to evaluate BTX A and B in a mouse model of critical flap ischemia for preoperative and intraoperative application. METHODS BTX A and B were applied on the vascular pedicle of an axial pattern flap in mice preoperatively or intraoperatively. Blood flow, tissue oxygenation, tissue metabolism, flap necrosis rate, apoptosis assay, and RhoA and eNOS expression were endpoints. RESULTS Blood-flow measurements 1 d after the flap operation revealed a significant reduction to 53% in the control group, while flow was maintained or increased in all BTX groups (103%-129%). Over 5 d all BTX groups showed significant increase in blood flow to 166-187% (P < 0.01). Microdialysis revealed an increase of glucose and reduced lactate/pyruvate ratio and glycerol levels in the flap tissue of all BTX groups. This resulted in significantly improved tissue survival in all BTX groups compared with the control group (62% ± 10%; all P < 0.01): BTX A preconditioning (84% ± 5%), BTX A application intraoperatively (88% ± 4%), BTX B preconditioning (91% ± 4%), and intraoperative BTX B treatment (92% ± 5%). This was confirmed by TUNEL assay. Immunofluorescence demonstrated RhoA and eNOS expression in BTX groups. All BTX applications were similarly effective, despite pharmacologic dissimilarities and different timing. CONCLUSIONS In conclusion, we were able to show on a vascular, tissue, cell, and molecular level that BTX injection to the feeding arteries supports flap survival through ameliorated blood flow and oxygen delivery.
C1 esterase inhibitor reduces lower extremity ischemia/reperfusion injury and associated lung damage
Resumo:
BACKGROUND Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). METHODS AND FINDINGS Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. CONCLUSIONS C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application.
Resumo:
We have previously identified phosphatidylinositol-4-phosphate 5-kinase type I (PIPKI)γ90 as a T cell uropod component. However, the molecular determinants and functional consequences of its localization remain unknown. In this report, we seek to better understand the mechanisms involved in PIPKIγ90 uropod targeting and the role that PIPKIγ90 plays in T cell uropod formation. During T cell activation, PIPKIγ90 cocaps with the membrane microdomain-associated proteins flotillin-1 and -2 and accumulates in the uropod. We report that the C-terminal 26 amino acid extension of PIPKIγ90 is required for its localization to the uropod. We further use T cells from PIPKIγ90(-/-) mice and human T cells expressing a kinase-dead PIPKIγ90 mutant to examine the role of PIPKIγ90 in a T cell uropod formation. We find that PIPKIγ90 deficient T cells have elongated uropods on ICAM-1. Moreover, in human T cells overexpression of PIPKIγ87, a naturally occurring isoform lacking the last 26 amino acids, suppresses uropod formation and impairs capping of uropod proteins such as flotillins. Transfection of human T cells with a dominant-negative mutant of flotillin-2 in turn attenuates capping of PIPKIγ90. Our data contribute to the understanding of the molecular mechanisms that regulate T cell uropod formation.
Resumo:
INTRODUCTION In patients with metastatic colorectal cancers, multimodal management and the use of biological agents such as monoclonal antibodies have had major positive effects on survival. The ability to predict which patients may be at 'high risk' of distant metastasis could have major implications on patient management. Histomorphological, immunohistochemical or molecular biomarkers are currently being investigated in order to test their potential value as predictors of metastasis. AREAS COVERED Here, the author reviews the clinical and functional data supporting the investigation of three novel promising biomarkers for the prediction of metastasis in patients with colorectal cancer: tumor budding, Raf1 kinase inhibitor protein (RKIP) and metastasis-associated in colon cancer-1 (MACC1). EXPERT OPINION The lifespan of most potential biomarkers is short as evidenced by the rare cases that have successfully made their way into daily practice such as KRAS or microsatellite instability (MSI) status. Although the three biomarkers reviewed herein have the potential to become important predictive biomarkers of metastasis, they have similar hurdles to overcome before they can be implemented into clinical management: standardization and validation in prospective patient cohorts.
Resumo:
Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.
Resumo:
Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues--both agonists and antagonists--suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.
Resumo:
BACKGROUND The GRP receptor shows high over-expression in prostatic adenocarcinoma and high grade PIN, but low expression in normal prostate glands. This represents the molecular basis for GRP receptor imaging of prostate cancer with radioactive compounds. However, a focal, high density GRP receptor expression can be observed in hitherto uncharacterized prostate glands. METHODS GRP receptors were quantitatively measured with in vitro receptor autoradiography using ¹²⁵I-Tyr⁴ -bombesin in samples from 115 prostates. On successive tissue sections, ¹²⁵I-Tyr⁴ -bombesin autoradiography was compared with H&E staining and MIB-1 and 34βE12 immunohistochemistry. RESULTS On one hand, it was confirmed that GRP receptors were expressed in adenocarcinoma and high grade PIN in high density and high incidence (77% and 73%, respectively), but in normal prostate glands in low density and low frequency (18%). On the other hand, a novel and intriguing observation was the existence of focal non-invasive prostate glands with high GRP receptor density, characterized by low grade nuclear atypia and increased proliferation, compatible with lower grade PIN. There was a significant GRP receptor density gradient (P ≤ 0.005), increasing from normal prostate glands (mean relative optical density, ROD, of ¹²⁵I-Tyr⁴ -bombesin binding: 0.17) over atypical glands without increased MIB-1 labeling (0.28) and atypical glands with increased MIB-1 expression (0.44) to high grade PIN and adenocarcinoma (0.64 and 0.58, respectively). CONCLUSIONS GRP receptor over-expression may be a novel, specific marker of early prostatic neoplastic transformation, arising in low grade PIN, and progressively increasing during malignant progression. This should be considered when interpreting in vivo GRP receptor imaging in males.
Resumo:
Somatostatin analogs for the diagnosis and therapy of neuroendocrine tumors (NETs) have been used in clinical applications for more than two decades. Five somatostatin receptor subtypes have been identified and molecular mechanisms of somatostatin receptor signaling and regulation have been elucidated. These advances increased understanding of the biological role of each somatostatin receptor subtype, their distribution in NETs, as well as agonist-specific regulation of receptor signaling, internalization, and phosphorylation, particularly for the sst2 receptor subtype, which is the primary target of current somatostatin analog therapy for NETs. Various hypotheses exist to explain differences in patient responsiveness to somatostatin analog inhibition of tumor secretion and growth as well as differences in the development of tumor resistance to therapy. In addition, we now have a better understanding of the action of both first generation (octreotide, lanreotide, Octreoscan) and second generation (pasireotide) FDA-approved somatostatin analogs, including the biased agonistic character of some agonists. The increased understanding of somatostatin receptor pharmacology provides new opportunities to design more sophisticated assays to aid the future development of somatostatin analogs with increased efficacy.
Resumo:
UNLABELLED The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer and is an attractive target for radionuclide therapy. In addition, inhibition of the protein kinase mammalian target of rapamycin (mTOR) has been shown to sensitize various cancer cells to the effects of radiotherapy. METHODS To determine the effect of treatment with rapamycin and radiotherapy with a novel (177)Lu-labeled GRPr antagonist ((177)Lu-RM2, BAY 1017858) alone and in combination, in vitro and in vivo studies were performed using the human PC-3 prostate cancer cell line. PC-3 cell proliferation and (177)Lu-RM2 uptake after treatment with rapamycin were assessed in vitro. To determine the influence of rapamycin on (177)Lu-RM2 tumor uptake, in vivo small-animal PET studies with (68)Ga-RM2 were performed after treatment with rapamycin. To study the efficacy of (177)Lu-RM2 in vivo, mice with subcutaneous PC-3 tumors were treated with (177)Lu-RM2 alone or after pretreatment with rapamycin. RESULTS Stable expression of GRPr was maintained after rapamycin treatment with doses up to 4 mg/kg in vivo. Monotherapy with (177)Lu-RM2 at higher doses (72 and 144 MBq) was effective in inducing complete tumor remission in 60% of treated mice. Treatment with 37 MBq of (177)Lu-RM2 and rapamycin in combination led to significantly longer survival than with either agent alone. No treatment-related toxicity was observed. CONCLUSION Radiotherapy using a (177)Lu-labeled GRPr antagonist alone or in combination with rapamycin was efficacious in inhibiting in vivo tumor growth and may be a promising strategy for treatment of prostate cancer.
Resumo:
Rosette-forming glioneuronal tumor (RGNT) is a recently introduced, indolent neoplasm composed of diminutive circular aggregates of neurocytic-like cells on a noninfiltrative astrocytic background, typically located in the cerebellar midline The traded concept of RGNT being derived from site-specific periventricular precursors may be questioned in the face of extracerebellar examples as well as ones occurring in combination with other representatives of the glioneuronal family. We describe a hitherto not documented example of asymptomatic RGNT discovered during autopsy of a 74-year-old male. Located in the tuberal vermis, this lesion of 6 mm diameter consisted of several microscopic nests of what were felt to represent nascent stages of RGNT, all of them centered on the internal granular layer, and ranging from mucoid dehiscences thereof to fully evolved - if small - tumor foci. Molecular genetic analysis revealed a missense mutation in Exon 20 of the PIK3CA gene involving an A→G transition at Nucleotide 3140. On the other hand, neither codeletion of chromosomes 1p/19q nor pathogenic mutations of IDH1/2 were detected. By analogy with in situ paradigms in other organs, we propose that this tumor is likely to have arisen from the internal granular layer, rather than the plate of the 4th ventricle. A suggestive departure from the wholesale argument of "undifferentiated precursors", this finding also indirectly indicates that a subset of non-classical RGNTs - in particular extracerebellar examples, whose origin cannot be mechanistically accounted for by either of the above structures - may possibly reflect an instance of phenotypic convergence, rather than a lineage-restricted entity.
Resumo:
The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.