83 resultados para B-CELL EPITOPES
Resumo:
BACKGROUND There is an urgent need for preclinical models of prostate cancer; however, clinically relevant patient-derived prostate cancer xenografts (PDXs) are demanding to establish. METHODS Sixty-seven patients who were undergoing palliative transurethral surgery or radical prostatectomy for histologically confirmed, clinically relevant prostate cancer were included in the study. Fresh prostate cancer tissue was identified by frozen analysis in 48 patients. The cancer tissue was transplanted subcutaneously and under the renal capsule of NSG and NOG mice supplemented with human testosterone. All growing PDXs were evaluated by histology and immunohistochemistry. RESULTS Early assessment of the animals at least three months after transplantation included 27/48 (56.3%) eligible PDX cohorts. PDX growth was detected in 10/27 (37%) mouse cohorts. Eight of the ten PDXs were identified as human donor derived lymphomas, including seven Epstein Barr virus (EBV)-positive diffuse large B-cell lymphomas and one EBV-negative peripheral T-cell lymphoma. One sample consisted of benign prostatic tissue, and one sample comprised a benign epithelial cyst. Prostate cancer was not detected in any of the samples. CONCLUSIONS Tumors that arise within the first three months after prostate cancer xenografting may represent patient-derived EBV-positive lymphomas in up to 80% of the early growing PDXs when using triple knockout NSG immunocompromised mice. Therefore, lymphoma should be excluded in prostate cancer xenografts that do not resemble typical prostatic adenocarcinoma. Prostate 9999: XX-XX, 2014. © 2015 Wiley Periodicals, Inc.
Resumo:
INTRODUCTION Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.
Resumo:
Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).
Resumo:
Membranous nephropathy is one of the most common glomerular diseases and leading causes of nephrotic syndrome in Caucasian adults. Known as a clinico-pathologic entity for over 50 years, it is defined by thickening of the glomerular capillary membrane with subepithelial immuncomplexes. Secondary forms (e. g. hepatitis B, autoimmune disease or medication-induced) are distinguished from idiopathic forms. Despite spontaneous remissions in about 30 % of cases, one third of idiopathic forms progress to end-stage renal disease after 10 years. Seminal research progress of the last decade has allowed the identification of autoantibodies directed against podocytary elements leading to secondary damage to the filtration barrier. The so-called idiopathic membranous nephropathy has thus become a prototype of autoimmune disease. The autoantibodies detectable in 70 - 80 % of cases of idiopathic membranous nephropathy are directed against the M-type phospholipase A2-receptor on the podocyte membrane and correlate with disease activity. These epochal findings influence on diagnostic and therapeutic strategies establishing a rationale for the use of B cell-directed therapy on top of optimal supportive therapy.
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.
Resumo:
Theileria parva-infected lymphoblastoid cell lines of T or B cell origin were examined for IL-2 mRNA expression. T. parva-infected T cell lines could be of the CD4-CD8-, CD4+CD8-, CD4-CD8+, or CD4+CD8+ phenotype and express alpha beta or gamma delta TCR. By Northern blot analysis and amplification by the polymerase chain reaction, IL-2 mRNA could be detected in all T. parva-infected cell lines tested. IL-2 mRNA expression was also shown to be dependent on the continuous presence of the parasite in the host cell cytoplasm, because elimination of the parasite by treatment of T. parva-infected cell cultures with the theilericidal drug BW720c resulted in the disappearance of detectable IL-2 mRNA. The effect of anti-IL-2 antibodies on the proliferation of T. parva-infected cells was also tested. Inhibition experiments suggest that although IL-2 mRNA can be detected in all cell lines tested, not all T. parva-infected cell lines are dependent on IL-2 for their proliferation. Our data provide the first example for the constitutive expression of IL-2 mRNA in T and B cells caused by infection with an intracellular parasite.
Resumo:
The adenylate cyclase toxoid (ACT) of Bordetella pertussis is capable of delivering its N-terminal catalytic domain into the cytosol of CD11b-expressing professional antigen-presenting cells such as myeloid dendritic cells. This allows delivery of CD8+ T-cell epitopes to the major histocompatibility complex (MHC) class I presentation pathway. Recombinant detoxified ACT containing an epitope of the Plasmodium berghei circumsporozoite protein (CSP), indeed, induced a specific CD8+ T-cell response in immunized mice after a single application, as detected by MHC multimer staining and gamma interferon (IFN-gamma) ELISPOT assay. This CSP-specific response could be significantly enhanced by prime-boost immunization with recombinant ACT in combination with anti-CTLA-4 during the boost immunization. This increased response was accompanied by complete protection in a number of mice after a challenge with P. berghei sporozoites. Transient blockade of CTLA-4 may overcome negative regulation and hence provide a strategy to enhance the efficacy of a vaccine by amplifying the number of responding T cells.