104 resultados para Antibiotic peptides
Resumo:
1. C6 glioma cells were transfected with two constructs carrying C-terminal laminin alpha1-chain sequences of 117 and 114 bp length, respectively. These sequences are specifically known to code for peptides which have neurite-promoting activity. 2. The stable expression and secretion of the two peptides was detected by Northern and Western blot analysis. 3. Primary neuronal cultures derived from embryonic mouse forebrain were cocultured with these transfected cells and exhibited a substantial increase in neurite outgrowth and in survival time. Conditioned media from the transfected cells generated similar effects. 4. Organotypic cultures from embryonic mouse brain were used as a second system as being closer to the in vivo situation. Again, coculture of brain slices with transfected cells or treatment with laminin peptide-containing media increased neuronal outgrowth.
Resumo:
A total of 72 Lactococcus strains (41 Lactococcus lactis and 31 Lactococcus garvieae) isolated from bovine milk were tested for susceptibility to 17 antibiotics and screened for the presence of antibiotic resistance genes using a microarray. Resistance to tetracycline, clindamycin, erythromycin, streptomycin, nitrofurantoin were found. The tetracycline-resistant L. garvieae and L. lactis harbored tet(M) and tet(S). L. lactis that were resistant to clindamycin were also resistant to erythromycin and possessed the erm(B) gene. The multidrug transporter mdt(A), originally described in L. lactis, was detected for the first time in L. garvieae and does not confer decreased susceptibility to erythromycin nor tetracycline in this species. Mdt(A) of L. garvieae contains one mutation in each antiporter motif C, which is known to play an essential role in drug efflux antiporters. This suggests that the mutations found in the C-motifs of Mdt(A) from L. garvieae may be responsible for susceptibility. The study revealed the presence of antibiotic resistance genes in non-pathogenic and pathogenic lactococci from bovine milk, including a mutated multidrug transporter in L. garvieae.
Resumo:
The cpb2 gene of beta2-toxigenic Clostridium perfringens isolated from horses, cattle, sheep, human and pigs was sequenced. The cpb2 gene of equine and other non-porcine isolates differed from porcine isolates by the absence of an adenine in a poly A tract immediately downstream of the start codon in all non-porcine C. perfringens strains. This deletion involved formation of a cryptic gene harbouring a premature stop codon after only nine amino acid codons, while the full beta2-toxin protein consists of 265 amino acids. Immunoblots carried out with antibodies directed against a recombinant beta2-toxin showed the absence of expression of the beta2-toxin in equine and the other non-porcine strains under standard culture conditions. However, treatment of C. perfringens with the aminoglycosides gentamicin or streptomycin was able to induce expression of the cpb2 gene in a representative equine strain of this group, presumably by frameshifting. The presence of the beta2-toxin was revealed by immunohistology in tissue samples of small and large intestine from horses with severe typhlocolitis that had been treated before with gentamicin. This result may explain the finding that antibiotic treatment of horses affected by beta2-toxigenic C. perfringens leads to a more accentuated and fatal progression of equine typhlocolitis. Clinical observations show a reduced appearance of strong typhlocolitis in horses with intestinal complications admitted to hospital care since the standard use of gentamicin has been abandoned. This is the first report on expression of a bacterial toxin gene by antibiotic-induced ribosomal frameshifting.
Resumo:
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Resumo:
This subject is reviewed under the following headings: Microbial contamination of raw meat and raw milk; Antibiotic resistance of food-borne pathogens; Antibiotic resistance of commensal and potentially pathogenic bacteria as a new threat in food microbiology; Antibiotic-resistant staphylococci in fermented meat and [in] milk products; Antibiotic-resistant Enterococcus sp. in fermented meat and [in] milk products; Enterococci in farm animals and meat; Enterococci in fermented food; Molecular characterization of resistance of food-borne enterococci; and Further ecological and epidemiological considerations of resistant live bacteria in food. It is concluded that further research is needed, particularly into the possible transfer of the resistance of bacteria consumed in meat or milk products to the indigenous bacteria of the human consumer.
Resumo:
Coagulase-negative staphylococci were isolated from different raw milk cheeses and raw meat products and screened for their antibiotic resistances. They were identified as Staphylococcus xylosus, S. lentus, S. caprae, S. epidemidis and S. haemolyticus. The most frequent resistances found were those to chloramphenicol, tetracycline, erythromycin and lincomycin. They have been characterized on the molecular level. The chloramphenicol resistance genes were localized in several S. xylosus and S. caprae on plasmids with sizes ranging from 3.8-kb to 4.3-kb and were identified as chloramphenicol acetyltransferase (cat). All the tetracycline resistant strains were identified as S. xylosus and harboured a 4.4-kb plasmid carrying the tetracycline efflux resistance gene (tetK). The two erythromycin/lincomycin resistant S. caprae and S. epidermidis strains did not hybridize with the MLSB resistance genes ermAM, ermA, ermB and ermC. Three erythromycin resistant Staphylococcus sp. strains harboured an erythromycin efflux resistance gene (msr) localized twice on a 18-kb plasmid and once on the chromosome. A S. haemolyticus strain showing resistance to both lincomycin and clindamycin harboured a linA gene-carrying 2.2-kb plasmid. Further resistances to gentamicin, penicillin and kanamycin were less frequently observed and yet not characterized on a molecular level.
Resumo:
Nutritive and therapeutic treatment of farm animals with antibiotics, amounting to half of the world's antibiotic output, has selected for resistant bacteria that may contaminate the food produced. Antibiotic-resistant enterococci and staphylococci from animals are found in food when they survive the production processes, as in raw cured sausages and raw milk cheeses1. The broad host ranges of some plasmids and the action of transposons in many bacteria allow antibiotic-resistance genes to be communicated by conjugation between different species and genera2,3. A multi-antibiotic resistance plasmid from a lactococcus found in cheese provides a historical record of such events.
Resumo:
OBJECTIVES To assess the effectiveness of implementing guidelines, coupled with individual feedback, on antibiotic prescribing behaviour of primary care physicians in Switzerland. METHODS One hundred and forty general practices from a representative Swiss sentinel network of primary care physicians participated in this cluster-randomized prospective intervention study. The intervention consisted of providing guidelines on treatment of respiratory tract infections (RTIs) and uncomplicated lower urinary tract infections (UTIs), coupled with sustained, regular feedback on individual antibiotic prescription behaviour during 2 years. The main aims were: (i) to increase the percentage of prescriptions of penicillins for all RTIs treated with antibiotics; (ii) to increase the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics; (iii) to decrease the percentage of quinolone prescriptions for all cases of exacerbated COPD (eCOPD) treated with antibiotics; and (iv) to decrease the proportion of sinusitis and other upper RTIs treated with antibiotics. The study was registered at ClinicalTrials.gov (NCT01358916). RESULTS While the percentage of antibiotics prescribed for sinusitis or other upper RTIs and the percentage of quinolones prescribed for eCOPD did not differ between the intervention group and the control group, there was a significant increase in the percentage of prescriptions of penicillins for all RTIs treated with antibiotics [57% versus 49%, OR = 1.42 (95% CI 1.08-1.89), P = 0.01] and in the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics [35% versus 19%, OR = 2.16 (95% CI 1.19-3.91), P = 0.01] in the intervention group. CONCLUSIONS In our setting, implementing guidelines, coupled with sustained individual feedback, was not able to reduce the proportion of sinusitis and other upper RTIs treated with antibiotics, but increased the use of recommended antibiotics for RTIs and UTIs, as defined by the guidelines.
Resumo:
Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains.
Resumo:
The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.
Resumo:
A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance.
Resumo:
BackgroundAcute cough is a common problem in general practice and is often caused by a self-limiting, viral infection. Nonetheless, antibiotics are often prescribed in this situation, which may lead to unnecessary side effects and, even worse, the development of antibiotic resistant microorganisms worldwide. This study assessed the role of point-of-care C-reactive protein (CRP) testing and other predictors of antibiotic prescription in patients who present with acute cough in general practice.MethodsPatient characteristics, symptoms, signs, and laboratory and X-ray findings from 348 patients presenting to 39 general practitioners with acute cough, as well as the GPs themselves, were recorded by fourth-year medical students during their three-week clerkships in general practice. Patient and clinician characteristics of those prescribed and not-prescribed antibiotics were compared using a mixed-effects model.ResultsOf 315 patients included in the study, 22% were prescribed antibiotics. The two groups of patients, those prescribed antibiotics and those treated symptomatically, differed significantly in age, demand for antibiotics, days of cough, rhinitis, lung auscultation, haemoglobin level, white blood cell count, CRP level and the GP¿s license to self-dispense antibiotics. After regression analysis, only the CRP level, the white blood cell count and the duration of the symptoms were statistically significant predictors of antibiotic prescription.ConclusionsThe antibiotic prescription rate of 22% in adult patients with acute cough in the Swiss primary care setting is low compared to other countries. GPs appear to use point-of-care CRP testing in addition to the duration of clinical symptoms to help them decide whether or not to prescribe antibiotics.
Resumo:
UNLABELLED Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.